Skip to main content

Advertisement

Log in

Hypericins: biotechnological production from cell and organ cultures

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hypericum perforatum L. (St. John’s wort), a perennial flowering plant native to Europe, is widely used as a medicinal plant and has a long history of its use in the treatment of various ailments. Currently, H. perforatum is widely used as an herbal remedy for the treatment of mild to moderate depression. Hypericins are natural napthodianthrone compounds produced from H. perforatum (St. John’s wort) which are having antitumor, antiviral (i.e., against human immunodeficiency and hepatitis C virus), antineoplastic, and antidepressant properties. Currently, field-grown plant materials are generally used for the commercial production of hypericins. It has been reported that hypericin accumulation in natural plants is influenced by different ecological and environmental conditions including light intensity, nitrogen availability, temperature, seasons, and growing regions. Therefore, up to 17-fold and 13-fold differences in hypericin and pseudohypericin amounts, respectively, are reported in different phytopharmaceutical preparations. Plant cell and organ cultures are effective systems for producing natural products, and attempts were made for the production of biomass and stable concentrations of hypericins through in vitro cultures of H. perforatum. Cell, callus, shoot, plantlet, and adventitious root cultures have been established and various chemical and physical factors which influence the biomass and secondary metabolite accumulation have been investigated. Large-scale plantlet and adventitious root cultures have also been attempted in H. perforatum in bioreactors, and various strategies have been applied for the production of higher biomass and secondary products. This review describes the biotechnological approaches employed for the production of hypericins and focuses upon the challenges and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinis P, Vantieghem A, Merlevede W, de Witte PAM (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cel Biol 34:221–241

    Article  CAS  Google Scholar 

  • Anonymous (1997) St. John’s wort. Hypericum perforatum. Quality control, analytical and therapeutic monograph. Texas, American Botanical Council

  • Anonymous (2000) Natural sources of flavourings. Report No. 1. Strasbourg, Council of Europe

  • Anonymous (2005) National center for complementary and alternative medicine. St. John’s wort fact sheet (Publication D269). Bethesda, National institutes of health

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–485

    CAS  Google Scholar 

  • Ayogi H, Koboyashi Y, Yamada K, Yokoyama M, Kusakari K, Tanaka H (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl Microbiol Biotechnol 57:482–488

    Article  Google Scholar 

  • Bais HP, Walker TS, McGraw JJ, Vivanco JM (2002) Factors affecting growth of cell suspension cultures of Hypericum perforatum L. (St. John’s wort) and production of hypericin. In Vitro Cell Dev Biol Plant 38:58–65

    Article  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413–32422

    Article  PubMed  CAS  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2000) Herbal medicines. A guide for health-care professionals. CD-ROM Complimentary and alternative medicine micromedex series

  • Barnes J, Anderson LA, Phillipson D (2001) St. John’s wort (Hypericum perforatum): a review of chemistry, pharmacology and clinical properties. J Pharm Pharmacol 53:583–600

    Article  PubMed  CAS  Google Scholar 

  • Birt DF, Widrlechner MP, Hammer KD, Hillwig ML, Wei J, Kraus GA, Murphy PA, McCoy JA, Wurtele ES, Neighbors JD, Wiemer DF, Maury W, Price JP (2009) Hypericum in infection: identification of anti-viral and anti-inflammatory constituents. Pharm Biol 47:774–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Bombardelli E, Morazzoni P (1995) Hypericum perforatum. Fitoterapia 66:43–68

    CAS  Google Scholar 

  • Briskin DP, Gawienowski MC (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol Biochem 39:1075–1081

    Article  CAS  Google Scholar 

  • Briskin DP, Leroy A, Gawienowski M (2000) Influence of nitrogen on the production of hypericins by St. John’s wort. Plant Physiol Biochem 38:413–420

    Article  CAS  Google Scholar 

  • Bruni R, Sacchetti G (2009) Factors affecting polyphenol biosynthesis in wild and field grown St. John’s wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 14:682–725

    Article  PubMed  CAS  Google Scholar 

  • Caraci F, Crupi R, Drago F, Spina E (2011) Metabolic drug interactions between antidepressants and anticancer drugs: focus on selective serotonin reuptake inhibitors and hypericum extract. Curr Drug Metab 12:570577

    Article  Google Scholar 

  • Carlo GD, Borrelli F, Ernst E, Izzo AA (2001) St. John’s wort: Prozac from the plant kingdom. Trends Pharmacol Sci 22:292–297

    Article  PubMed  Google Scholar 

  • Cellarova E, Kimakova K, Daxnerova Z, Martonif P (1995) Hypericum perforatum (St. John’s wort): in vitro culture and production of hypericin and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, medicinal and aromatic plants VIII, vol 33. Springer, Berlin, pp 261–275

    Google Scholar 

  • Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Organ Cult 62:187–193

    Article  CAS  Google Scholar 

  • Ciccarelli D, Andreucci A, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum L. (Hypricaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. An Bot 88:637–644

    Article  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010a) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  PubMed  CAS  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010b) Adventitious root suspension cultures of Hypericum perforatum: effect of nitrogen source on production of biomass and secondary metabolites. In Vitro Cell Dev Biol Plant 46:437–444

    Article  CAS  Google Scholar 

  • Cui XH, Murthy HN, Wu CH, Paek KY (2010c) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tiss Organ Cult 103:7–14

    Article  CAS  Google Scholar 

  • Cui XH, Murthy HN, Jin YX, Yim YH, Kim JY, Paek KY (2011) Production of adventitious root biomass and secondary metabolites of Hyericum perforatum L. in a balloon type airlift bioreactor. Bioresour Technol 102:10072–10079

    Article  PubMed  CAS  Google Scholar 

  • Cui XH, Murthy HN, Paek KY (2014a) Pilot-scale culture of Hypericum perforatum L. Adventitious root in airlift bioreactors for the production of bioactive compounds. Appl Bichem Biotechnol. doi:10.1007/s12010-014-1123-8

    Google Scholar 

  • Cui YC, Murthy HN, Moh SH, Cui YY, Lee EJ, Paek KY (2014b) Production of biomass and bioactive compounds in protocorm cultures of Dendrobium candidum Wall ex Lindl. using balloon type bubble bioreactors. Ind Crops Prd 53:28–33

    Article  CAS  Google Scholar 

  • Curtis JD, Lersten NR (1990) Internal secretory structures in Hypericum (Clusiaceae): H. perforatum L. and H. balearicum L. New Phtol 114:571–580

    Article  Google Scholar 

  • Dornenburg H, Knorr D (1995) Strategies for improvement of secondary metabolite production in plant cell cultures. Enz Microb Technol 17:674–684

    Article  Google Scholar 

  • Falk H (1999) From the photosensitizer hypericin to the photoreceptor stentorian—the chemistry of phenanthroperylene quinines. Angew Chem Int Ed 38:3116–3136

    Article  Google Scholar 

  • Fields PG, Arnason JT, Fulcher RG (1990) The structural properties of Hypericum perforatum leaves: the implications for its photoactiveted defenses. Can J Bot 68:1166–1170

    Article  Google Scholar 

  • Fornasiero RB, Bianchi A, Pinetti A (1998) Anatomical and ultra structural observations in Hypericum perforatum L. leaves. J Herbs Sp Med Plants 5:21–33

    Article  Google Scholar 

  • Gadzovska S, Maury S, Ounnar S, Righezza M, Kascakova S, Refregiers M, Spasenoski M, Joseph C, Hagege D (2005) Identification and quantification of hypericin and pseudophypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem 43:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C, Hagege D (2007) Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effect on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tiss Organ Cult 89:1–13

    Article  CAS  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagege D, Courtois D, Joseph C (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tiss Organ Cult 113:25–29

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:150–158

    Article  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  PubMed  CAS  Google Scholar 

  • Georgiev MI, Ebil R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  PubMed  CAS  Google Scholar 

  • Germ M, Stibilj V, Kreft S, Gaberscik A, Kreft I (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474

    Article  CAS  Google Scholar 

  • Greeson JM, Sanford B, Monti DA (2001) St. John’s wort (Hypericum perforatum): a review of the current pharmacological, toxicological and clinical literature. Phychopharmacology 153:402–414

    Article  CAS  Google Scholar 

  • Hudson JB, Lopez-Bazzochi I, Tower GH (1991) Antiviral activities of hypericin. Antiviral Res 15:101–112

    Article  PubMed  CAS  Google Scholar 

  • Jeong CS, Murthy HN, Hahn EJ, Lee HL, Paek KY (2009) Inoculum size and auxin concentration influence the growth of adventitious root and accumulation of ginsenosides in suspension cultures of ginseng (Panax ginseng C. A. Meyer). Acta Physiol Plant 31:219–222

    Article  CAS  Google Scholar 

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karppinen K, Hohtola A (2008) Molecular cloning and tissue-sepcific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Kartning T, Gobel I, Heydel B (1996) Production of hypericin, pseudohypercin an flavonoids in cell cultures of various Hypericum species and their chemotyeps. Planta Med 62:51–53

    Article  Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Hayashi HY, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld A, Kaufman PB, Lu CR, Gibson DM, Bolling SF, Warber SL, Chang SC, Kirakosyan A (2007) The production of hypericins in two selected Hypericum perforatum shoot cultures is related to differences in black gland structure. Plant Physiol Biochem 45:24–32

    Article  PubMed  CAS  Google Scholar 

  • Kosuth J, Koperdakova J, Tolonen A, Hohtola A, Cellarova E (2003) The content of hypericins and phloroglucinols in Hypericum perforatum L. seedlings at early stage of development. Plant Sci 165:515–521

    Article  CAS  Google Scholar 

  • Kosuth J, Katkovcinova Z, Olexova P, Cellrova E (2007) Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant Cell Rep 26:211–217

    Article  PubMed  CAS  Google Scholar 

  • Kubin A, Wierrani F, Burner U, Alth G, Crunberger W (2005) Hypericin—the facts about the controversial agent. Curr Pharm Design 11:233–253

    Article  CAS  Google Scholar 

  • Kwok KH, Doran PM (1995) Kininetic and stoichiometic analysis of hairy roots in a segmented bubble column reactor. Biotechnol Prog 11:429–435

    Article  CAS  Google Scholar 

  • Lavie G, Mazur Y, Lavie D, Prince AM, Pascual D, Liebes L, Levin B, Meruelo D (1995) Hypericin as an inactivator of infectious viruses in blood components. Transfusion 35:392–400

    Article  PubMed  CAS  Google Scholar 

  • Lenard I, Rabson A, Vanderoef R (1993) Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A 90:158–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu XN, Zhang XQ, Sun JS (2007a) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  • Liu XN, Zhang XQ, Zhang SX, Sun JS (2007b) Regulation of metabolite production by precursors and elicitors in liquid cultures of Hypericum perforatum. Plant Cell Tiss Organ Cult 91:1–7

    Article  CAS  Google Scholar 

  • Lopez-Bazzochi I, Hudson JB, Tower GH (1991) Antiviral activity of photoactive plant pigment hypericin. Photochem Photobiol 54:95–98

    Article  Google Scholar 

  • Michalska K, Fernades H, Sikorski M, Jaskolski M (2010) Crystal structure of Hyp-1, a St. John’s wort protein implicated in the biosynthesis of hypericin. J Struct Biol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Miller AL (1998) St. John’s wort (Hypericum perforatum): clinical effects on depression and other conditions. Alt Med Rev 3:18–26

    CAS  Google Scholar 

  • Miskovsky P (2002) Hypericin—a new antiviral and antitumor photosensitizer: mechanism of action and interaction with biological macromolecules. Curr Drug Targets 3:55–84

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affect growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exptl Bot 49:251–257

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014a) Production of secondary metabolites form cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, Paek KY (2014b) Ginsenosides: prospective for sustainable biotechnological production. Appl Microbiol Biotechnol 98:6243–6254

    Article  PubMed  CAS  Google Scholar 

  • Murthy HN, Kim YS, Georgiev MI, Paek KY (2014c) Biotechnological production of eleutherosides: current state and perspectives. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5899-9

    Google Scholar 

  • Murthy HN, Kim YS, Park SY, Paek KY (2014d) Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5862-6

    Google Scholar 

  • Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmacophychiatry 30:129–134

    Article  CAS  Google Scholar 

  • Newall CA, Anderdon LA, Phillipson JD (1996) Herbal medicines. A guide for healthcare professionals. Pharmaceutical Press, London

    Google Scholar 

  • Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol 113:151–176

    PubMed  CAS  Google Scholar 

  • Parfitt K (1999) Martindale. The complete drug reference, 32nd edn. Pharmaceutical Press, London

    Google Scholar 

  • Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypercium perforatum cv. Topas. Plant Sci 165:977–982

    Article  CAS  Google Scholar 

  • Pavlik M, Vacek J, Kledus B, Kuban V (2007) Hypericin and hyperforin production in St. John’s wort in vitro culture: influence of saccharose, polyethylene glycol, methyl jasmonate and Agrobacterium tumefaciens. J Agric Food Chem 55:6147–6153

    Article  PubMed  CAS  Google Scholar 

  • Repacak M, Martonfi P (1997) The localization of secondary substances in Hypericum peroforatum flower. Biol Brastislava 52:91–94

    Google Scholar 

  • Savio LE, Astarita LV, Santarem ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell Tiss Organ Cult 108:465–472

    Article  CAS  Google Scholar 

  • Scragg AH, Morris P, Allan EJ, Bond P, Fowler MW (1987) Effect of scale-up on serpentine formation by Catharanthus roseus suspension cultures. Enz Microb Technol 9:619–624

    Article  CAS  Google Scholar 

  • Shohael AM, Murthy HN, Hahn EJ, Paek KY (2007) Methyl jasmonate induced overproduction of eleutherosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Electron J Biotechnol 10:633–637

    Article  Google Scholar 

  • Shohael AM, Murthy HN, Hahn EJ, Lee HL, Paek KY (2008) Increased eleutheroside production in Eleutherococcus sessiliflorus embryogenic suspension cultures with methyl jasmonate treatment. Biochem Eng J 38:270–273

    Article  CAS  Google Scholar 

  • Shohael AM, Murthy HN, Paek KY (2014) Pilot-scale culture of somatic embryos of Eleutherococcus senticosus in airlift bioreactors for the production of eleutherosides. Biotechnol Lett 36:1727–1733

    Article  PubMed  CAS  Google Scholar 

  • Sirvent T, Gibson D (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    Article  CAS  Google Scholar 

  • Southwell IA, Bourke CA (2001) Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s wort). Phytochemistry 56:437–441

    Article  PubMed  CAS  Google Scholar 

  • Than NT, Murthy HN, Yu KW, Hahn EJ, Paek KY (2005) Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Appl Microbiol Biotechnol 62:151–155

    Google Scholar 

  • Thanh NH, Murthy HN, Paek KY (2014) Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system. Ind Crops Prod 60:343–348

    Article  CAS  Google Scholar 

  • Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi S (2006) Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170

    Article  PubMed  CAS  Google Scholar 

  • Vattikuti UMR, Ciddi V (2005) An overview of Hypericum perforatum Linn. Nat Prod Rad 4:368–381

    Google Scholar 

  • Wagner H, Bladt S (1994) Pharmaceutical quality of hypericum extracts. J Geriatr Psychiatry Neurol 7:S65–S68

    Article  PubMed  Google Scholar 

  • Walker TS, Bais HP, Vivanco JM (2002) Jasmonic acid-induced production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60:289–293

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Murthy HN, Hahn EJ, Paek KY (2007) Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid. Biotechnol Lett 29:1179–1182

    Article  PubMed  CAS  Google Scholar 

  • Wu SQ, Yu XK, Lian ML, Park SY, Piao XC (2014) Several factors affecting hypericin production of Hypericum perforatum during adventitious root culture in airlift bioreactors. Acta Physiol Plant 36:975–981

    Article  Google Scholar 

  • Yamamoto H, Ichimura M, Inoue K (1995) Stimulation of prenylated flavone production by mannans and acidic polysaccharides in callus cultre of Sophora flavescens. Phytochemistry 40:77–81

    Article  CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higahsi Y, Hara Y (1996) Methyl jasmonate induced overproduction of pclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Zdunek K, Alfermann W (1992) Initiation of shoot organ cultures of Hypericum perforatum and formation of hypericin derivatives. Planta Med 58:621–622

    Article  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:183–333

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinge HPV, Saxena PK (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissue Organ Cult 75:143–149

    Article  CAS  Google Scholar 

  • Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv. ‘New Stem’). Plant Sci 166:333–340

    Article  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol Biochem 43:977–984

    Article  PubMed  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98:793–804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (Grant No. A103017). HNM is thankful to the Ministry of Education, Science, and Technology, Republic of Korea for the Brain Pool Fellowship (131S-4-3-0523). The Ministry of Science, ICT, and Planning (MSIP) also supported this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hosakatte Niranjana Murthy or Kee-Yoeup Paek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, H.N., Kim, YS., Park, SY. et al. Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 98, 9187–9198 (2014). https://doi.org/10.1007/s00253-014-6119-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6119-3

Keywords

Navigation