Skip to main content
Log in

Structural investigation of syringomycin-E using molecular dynamics simulation and NMR

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Syringomycin-E (SR-E) is a cyclic lipodepsinonapeptide produced by certain strains of the bacterium Pseudomonas syringae pv. syringae. It shows inhibitory effects against many fungal species, including human pathogens. Its primary biological target is the plasma membrane, where it forms channels comprised of at least six SR-E molecules. The high-resolution structure of SR-E and the structure of the channels are currently not known. In this paper, we investigate in atomic detail the molecular features of SR-E in water by NMR and in water and octane by molecular dynamics simulation (MD). We built a model of the peptide and examined its structure in water and octane in 200 ns MD simulations both with and without distance restraints derived from NMR NOE data. The resulting trajectories show good agreement with the measured NOEs and circular dichroism data from the literature and provide atomistic models of SR-E that are an important step toward a better understanding of the antifungal and antibacterial activity of this peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ágner G, Kaulin YA, Gurnev PA, Szabó Z, Schagina LV, Takemoto JY, Blaskó K (2000) Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Bioelectrochemistry 52(2):161–167

    Article  Google Scholar 

  • Ballio A, Bossa F, Collina A, Gallo M, Iacobellis NS, Paci M, Pucci P, Scaloni A, Segre A, Simmaco M (1990) Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae. FEBS Lett 269:377–380

    Article  Google Scholar 

  • Ballio A, Barra D, Bossa F, Collina A, Grgurina I, Marino G, Moneti G, Paci M, Pucci P, Segre A, Simmaco M (1991) Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae. FEBS Lett 291:109–112

    Article  Google Scholar 

  • Ballio A, Collina A, Di Nola A, Manetti C, Pad M, Segre A (1994) Determination of structure and conformation in solution of syringotoxin, a lipodepsipeptide from Pseudomonas syringae pv. syringae by 2D NMR and molecular dynamics. Struct Chem 5:43–50

    Article  Google Scholar 

  • Ballio A, Bossa F, Di Giorgio D, Di Nola A, Manetti C, Paci M, Scaloni A, Segre LA (1995) Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25-A Two-dimensional NMR, distance geometry and molecular dynamics. Eur J Biochem 234:747–758

    Article  Google Scholar 

  • Bax A, Davis DG (1985) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross D (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide syntheses. Microbiol Mol Biol 63:266–292

    Google Scholar 

  • Berendsen HJC, Postman JPM, van Gunsteren, Hermans J (1981) Intermolecular forces. D. Reidel Publishing Company, Dordrecht, pp 331–342

    Google Scholar 

  • Berendsen HJC, Postman JPM, van Gunsteren WF, Di Nola A, Haak JRJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  ADS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Comm 91:43–56

    Article  ADS  Google Scholar 

  • Che FS, Kasamo K, Fukuchi N, Isogai A, Suzuki A (1992) Bacterial phytotoxins, syringomycin, syringostatin and syringotoxin, exert their effect on the plasma membrane H+ -ATPase partly by a detergent action and partly by inhibition of the enzyme. Physiol Plant 86:518–524

    Article  Google Scholar 

  • Dalla Serra M, Fagiuoli G, Nordera P, Bernhart I, Della Volpe C, Di Giorgio D, Ballio A, Menestrina G (1999) The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptines. Mol Plant Microbe Interact 12:391–400

    Article  Google Scholar 

  • Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to protein folding intermediate observed in a 1-microdecond simulation in aqueous solution. Science 282:740–744

    Article  ADS  Google Scholar 

  • Frisch MJ, GWT, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA. Gaussian Inc., Pittsburgh PA, 2001 (2001). Gaussian 98 Revision A.11

  • Fukuchi N, Isogai A, Suzuki A (1990) Structure of phytotoxin syringomycin produced by a sugar cane isolate of Pseudomonas syringae pv. syringae. Tetrahedron Lett 31:27–31

    Article  Google Scholar 

  • Fukuchi N, Isogai A, Nakayama J, Takayama S, Yamashita S, Suyama K, Takemoto JY, Suzuki A (1992) Structure and stereochemistry of three phytotoxins syringomycin, syringostatin and syringotoxin produced by Pseudomonas syringae pv. syringae. J Chem Perkin Trans 1:1149–1157

    Article  Google Scholar 

  • Fulton DB, Ni F (1997) ROESY with water flip back for high field NMR of biomolecules. J Magn Reson 129:93–97

    Article  ADS  Google Scholar 

  • Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  • Hwang TL, Shaka AJ (1995) Water suppression that works: excitation sculpting using arbitrary waveforms and pulse field gradients. J Magn Reson A 112:275–279

    Article  Google Scholar 

  • Kaulin YA, Schagina LV, Bezrukov SM, Malev VV, Feigin AM, Takemoto JY, Teeter JH (1998) Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys J 74:2918–2925

    Google Scholar 

  • Kövér KE, Uhrin D, Hruby VJ (1998) Gradient- and sensitivity-enhanced TOCSY experiments. J Magn Reson 130:162–168

    Article  ADS  Google Scholar 

  • Kumar A, Ernst RR, Wüthrich K (1980) Biochem Biophys Res Commun 95:1–6

    Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Google Scholar 

  • Lippens G, Dhalluin C, Wieruszeski JM (1995) Use of water flip-back pulse in the homonuclear NOESY experiment. J Biomol NMR 5:327–331

    Article  Google Scholar 

  • Malev VV, Kaulin YA, Bezrukov SM, Gurnev PA, Takemoto JY, Schagina LY (2001) Kinetics of opening and closure of syringomycin E channels formed in lipid bilayer. Membr Cell Biol 14:813–829

    Google Scholar 

  • Malev VV, Schagina L, Gurnev P, Takemoto YJ, Nestorovich EM, Bezrukov S (2002) Syringomycin E channel: a lipidic pore stabilized by lipopeptide. Biophys J 82:1985–1994

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  Google Scholar 

  • Monticelli L, Colombo G (2004) The influence of simulation conditions in molecular dynamics investigations of model β-sheet peptides. Theor Chem Acc 112:145–157

    Article  Google Scholar 

  • Monticelli L, Tieleman DP, Colombo G (2005) Mechanism of helix nucleation and propagation: microscopic view from microsecond time scale MD simulations. J Phys Chem B 109:20064–20067

    Article  Google Scholar 

  • Neuhaus D, Williamson MP (1989) The nuclear overhauser effect in structural and conformational analysis, VCH Publ

  • Reidl HH, Grover TA, Takemoto JY (1989) 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys Acta 1010:325–329

    Article  Google Scholar 

  • Schagina LV, Kaulin YA, Feigin AM, Takemoto JY, Brand JG, Malev VV (1998) Properties of ionic channels formed by the antibiotics syringomycin E in lipid bilayer. Dependence of the electrolyte concentration in the bathing solution. Membr Cell Biol 12:537–555

    Google Scholar 

  • Segre A, Bachmann RC, Ballio A, Bossa F, Grgurina I, Iacobellis NS, Marino G, Pucci P, Simmaco M, Takemoto JY (1989) The structure of syringomycins A1, E, G. FEBS Lett 255:27–31

    Article  Google Scholar 

  • Sklenár V (1995) J Magn Reson A 114:132–135

    Google Scholar 

  • Sklenár V, Piotto M, Leppik R, Saudek V (1993) J Magn Reson A 102:241–245

    Google Scholar 

  • van der Spoel D, van Drunen R, Berendsen HJC (2001) Groningen machine for chemical simulations. BIOSON Research Institute, Groningen

    Google Scholar 

  • Takemoto JY (1992) Molecular signals in plant microbe communications. In: Verma DSP (ed) CRC Press, Boca Raton, pp 247–260

  • Vaillo E, Ballio A, Luisi PL, Thomas RM (1992) The spectroscopic properties of the lipodepsipeptide, syringomycin-E. Biopolymers 32:1317–1326

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of protein nucleic acids. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by Hungarian Scientific Research Fund Grants F 043192, D 048670 and T 048713, by the Natural Science and Engineering Research Council of Canada and by AHFMR postdoctoral fellowships (Luca Monticelli, Zhitao Xu). DPT is an AHFMR Senior Scholar, CIHR New Investigator and Sloan Foundation Fellow. The authors are grateful to Professor Takemoto for providing SR-E for NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mátyus.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mátyus, E., Monticelli, L., Kövér, K.E. et al. Structural investigation of syringomycin-E using molecular dynamics simulation and NMR. Eur Biophys J 35, 459–467 (2006). https://doi.org/10.1007/s00249-006-0053-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-006-0053-y

Keywords

Navigation