Skip to main content
Log in

Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 g of soil) from five different potato farms were analyzed to determine negative and positive correlations between any bacterial genus and P. neglectus and M. chitwoodi. Farms showed differences in bacterial communities, percentage of bacterivorous and fungivorous nematodes, and numbers of P. neglectus and M. chitwoodi. The farm with the lowest population of P. neglectus and M. chitwoodi had higher abundances of the bacterial genera Bacillus spp., Arthrobacter spp., and Lysobacter spp., and the soil nematode community was composed of more than 30% of fungivorous nematodes. In contrast, the farm with higher numbers of P. neglectus and M. chitwoodi had a lower abundance of the abovementioned bacterial genera, higher abundance of Burkholderia spp., and less than 25% of fungivorous nematodes. The α-Proteobacteria Rhodoplanes, Phenylobacterium, and Kaistobacter positively correlated with M. chitwoodi, and the Bacteroidia and γ-Proteobacteria positively correlated with P. neglectus. Our results, based largely on co-occurrence analyses, suggest that the abundance of Bacillus spp., Arthrobacter spp., and Lysobacter spp. in Colorado potato soils is negatively correlated with P. neglectus and M. chitwoodi abundance. Further studies will isolate and identify bacterial strains of these genera, and evaluate their nematode-antagonistic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bender SF, Wagg C, Van der Heijden MJA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31(6):440–452

    Article  PubMed  Google Scholar 

  2. Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–5011

    Article  CAS  PubMed  Google Scholar 

  3. Tsiafouli MA, Thebault E, Sgardelis SP, De Ruiter PC, Van der Putten WH, Birkhofer K, Hemerik L, De Vries F, Bardgett RD, Brady MV, Bjornlund L, Jorgensen HB, Christentesen S, Hertfeldt TD, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setala H, Tzanapoulos J, Uteseny K, Pizl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985

    Article  PubMed  Google Scholar 

  4. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 232:1097–1100

    Article  Google Scholar 

  5. Bongers T, Ferris H (1999) Nematode community structure as a biomonitor in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  CAS  PubMed  Google Scholar 

  6. Chen ZX, Dickson DW (1998) Review of Pasteuria penetrans: biology, ecology and biological control potential. J Nematol 30:313–340

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268

    Article  CAS  PubMed  Google Scholar 

  8. Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M, Borgonie G, Gheysen G (2009) An endosymbiotic bacterium in plant-parasitic nematode: member of a new Wolbachia supergroup. Int J Parasitol 39:1045–1054

    Article  PubMed  Google Scholar 

  9. Noel GR, Atibalentja N (2006) ‘Candidatus Paenicardinium endonii’, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata:Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol 56:1697–1702

    Article  CAS  PubMed  Google Scholar 

  10. Poinar GO, Hansen EL (1986) Associations between nematodes and bacteria. Helmintholgy Abstracts 55:61–79

    Google Scholar 

  11. Bird D, Opperman CH, Davies KG (2003) Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol 33:1269–1276

    Article  CAS  PubMed  Google Scholar 

  12. Scholl EH, Thorne JL, McCarter JP, Bird D (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nour SM, Lawrence JR, Zhu H, Swerhone GDW, Welsh M, Welacky TW, Topp E (2003) Bacteria associated with cyst of the soybean cyst nematode (Heterodera glycines). Appl Environ Microbiol 69:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng XY, Tian XL, Wang YS, Lin RM, Mao ZC, Chen N, Xie BY (2013) Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci Report 3(1869):1–10

    Google Scholar 

  15. Bongers T, Bongers M (1998) Functional diversity of nematodes. Appl Soil Ecol 10:239–251

    Article  Google Scholar 

  16. Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food-web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  17. Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, Sternberg PW, Goodrich-Blair H (2012) Nematode-bacterium symbioses—cooperation and conflict reveal in the “omics” age. Biol Bull 223:85–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferris H, Bongers T (2009) Indices developed specifically for analysis of nematode assamblages. In: Wilson MJ, Kakouli-Duarte T (eds) Nematode as environmental indicators. CAB International, UK, pp. 124–145

    Chapter  Google Scholar 

  19. Neher DA, Darby BJ (2009) General community indices that can be used for analysis of nematode assemblages. In: Wilson MJ, Kakouli-Duarte T (eds) Nematode as environmental indicators. CAB International, UK, pp. 107–123

    Chapter  Google Scholar 

  20. Ferris H, Carlson HL, Viglierchio DR, Westerdahl BB, Wu FW, Anderson CE, Juurma A, Kirby DW (1993) Host status of selected crops to Meloidogyne chitwoodi. J Nematol 25:849–857

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pokharel R (2011) Importance of plant parasitic nematodes in Colorado crops. Colorado State University Extension, Fort Collins Fact Sheet No. 2952

    Google Scholar 

  22. Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  23. Ferris H, Bongers T (2006) Nematode indicators of organic enrichment. J Nematol 38:3–12

    PubMed  PubMed Central  Google Scholar 

  24. Lane DJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marchesi JR et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:765–799

    Google Scholar 

  26. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manter DK, Korsa M, Tebbe CR, Delgado JA (2016) myPhyloDB: a local web server for the analysis of metagenomics data. Database 2016:baw037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OUT clustering. Environ Microbiol 12:1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rognes T, Flouri T, Nichols B, Quince F, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. Peer J Preprints 4:e2409v1

    Google Scholar 

  30. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thalinger GG, Van Horn DJ, Wever CF (2009) Introducing mother: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  33. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108:756–770

    Article  CAS  PubMed  Google Scholar 

  35. Li M, Wen F, Ying H, Ming HM, Qin XJ, Qing DY, Huang FD, Shu Hui Y (2012) A strategy to discover potential nematicidal fumigants based on toxic volatiles from nematicidal bacteria. Afr J Microbiol Res 6:6106–6113

    Google Scholar 

  36. Terefe M, Tefera T, Sakhuja PK (2009) Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invertebr Pathol 100:94–99

    Article  PubMed  Google Scholar 

  37. Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS 61:197–213

    CAS  Google Scholar 

  38. Beare HM, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Article  Google Scholar 

  39. Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol 48:371–394

    Article  CAS  PubMed  Google Scholar 

  40. Pinkerton JN (1986) Occurrence of Meloidogyne chitwoodi in potato fields in Colorado. Plant Dis 71:192

    Article  Google Scholar 

  41. Huang Y, Xu CK, Ma L, Zhang KQ, Duan CQ, Mo MH (2010) Characterization of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422

    Article  CAS  Google Scholar 

  42. Castillo JD, Lawrence KS, Kloepper JW (2013) Biocontrol of the reniform nematode by Bacillus firmus GB-126 and Paecilomyces lilacinus 251 on cotton. Plant Dis 97:967–976

    Article  Google Scholar 

  43. Castillo JD (2012) Biocontrol Studies of the Reniform nematode. Determination of biocontrol activity of Bacillus firmus strain GB-126 against the reniform nematode. PhD Dissertation. Retrieved from Auburn University ETD: https://etd.auburn.edu/handle/10415/3318

  44. Mendoza AR, Kiewnick S, Sikora R (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita, and the stem nematode Ditylenchus dipsaci. Biocon Sci Technol 18:377–389. 35

    Article  Google Scholar 

  45. Lee YS, Anees M, Hyun HN, Kim KY (2013) Biocontrol potential of Lysobacter antibioticus HS124 against root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology 15:545–555

    Article  Google Scholar 

  46. Xu YY, Lu H, Wang X, Zhang KQ, Li GH (2015) Effect of volatile organic compounds from bacteria on nematodes. Chem Biodivers 12:1415–1421

    Article  CAS  PubMed  Google Scholar 

  47. Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575

    Article  CAS  Google Scholar 

  48. Omarjee J, Balandreau J, Spaull VW, Cadet P (2008) Relationships between Burkholderia populations and plant-parasitc nematodes in sugarcane. Appl Soil Ecol 39:1–14

    Article  Google Scholar 

  49. Estrada de los Santos P, Bustillos-Cristales R, Cabellero-Mellado J (2001) Burkholderia, a genus rich in plant associated nitrogen fixers with wide environmental and geographical distribution. Appl Environ Microbiol 67:2790–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hebbar KP, Atkinson D, Tucker W, Dart PJ (1992) Suppression of Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol Biochem 24:1009–1020

    Article  Google Scholar 

  51. Hiraishi A, Imhoff JF (2015) Rhodoplanes. Bergey’s Manual of Systematics of Archea and Bacteria. Wiley, Hoboken, pp. 1–14. doi:10.1002/9781118960608.gbm00826

    Google Scholar 

  52. Eberspacher J, Lingens F (2006) The genus Phenylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackerbrandt E (eds) The Prokariotes Vol.5. A handbook on the biology of bacteria Proteobacteria: Apha and Beta Subclasses. Springer-Verlac, New York, pp. 250–256

    Google Scholar 

  53. Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationships of Wolbachia of nematode and arthropods. PLoS Pathog 2:0888–0899

    Article  Google Scholar 

  54. Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathology 8:e1002527

    Article  CAS  Google Scholar 

  55. Islam MT (2011) Potentials for biological control of plant-diseases by Lysobacter spp. with special reference to strain SB-K88. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp. 335–363

    Chapter  Google Scholar 

  56. Chen J, Moore WH, Yuen GY, Kobayashi D, Caswell-Chen EP (2006) Influence of Lysobacter enzymogenes strain C3 on nematodes. J Nematol 38:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Becking JH (2006) The genus Beijerinckia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackerbrandt E (eds) The Prokariotes Vol.5. A handbook on the biology of bacteria Proteobacteria: Apha and Beta Subclasses. Springer-Verlac, New York, pp. 151–162

    Google Scholar 

Download references

Acknowledgements

We are grateful to Jeannine Willett (Agro Engineering, Alamosa, CO) for her help in site selection, characterization, and soil sampling; this work would not have been possible without her efforts and knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Manter.

Electronic supplementary material

Table S1

(XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, J.D., Vivanco, J.M. & Manter, D.K. Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils. Microb Ecol 74, 888–900 (2017). https://doi.org/10.1007/s00248-017-0990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0990-2

Keywords

Navigation