Skip to main content
Log in

On the Local Existence and Uniqueness for the 3D Euler Equation with a Free Interface

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We address the local existence and uniqueness of solutions for the 3D Euler equations with a free interface. We prove the local well-posedness in the rotational case when the initial datum \(u_0\) satisfies \(u_0\in H^{2.5+\delta }\) and , where \(\delta >0\) is arbitrarily small, under the Taylor condition on the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Low regularity Cauchy theory for the water-waves problem: canals and swimming pools, Journeés Équations aux Dérivées Partielles, Biarritz 6 Juin–10 Juin (2011), Exposé no. III, p. 20

  3. Alazard, T., Delort, J.M.: Global solutions and asymptotic behavior for two dimensional gravity water waves, arXiv:1305.4090 (2013)

  4. Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrose, D.M., Masmoudi, N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58(2), 479–521 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beale, J.T.: The initial value problem for the Navier–Stokes equations with a free surface. Commun. Pure Appl. Math. 34(3), 359–392 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beale, J.T., Hou, T.Y., Lowengrub, J.S.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro, A., Cordoba, D., Fefferman, C., Gancedo, F., Gomez-Serrano, J.: Splash singularity for water waves. Proc. Natl. Acad. Sci. 109(3), 733–738 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Castro, A., Lannes, D.: Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity, arXiv:1402.0464 [math.AP] (2014)

  10. Cauchy, A.L.: Sur l’état du fluide à une époque quelconque du mouvement, Mémoires extraits des recueils de l’Académie des sciences de l’Institut de France, Sciences mathématiques et physiques, Tome I (1827), Seconde Partie, pp. 33–73

  11. Constantin, P.: Euler and Navier–Stokes equations. Publ. Mat. 52(2), 235–265 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin, P.: An Eulerian–Lagrangian approach for incompressible fluids: local theory. J. Am. Math. Soc. 14, 263–278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coutand, D., Shkoller, S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discret. Contin. Dyn. Syst. Ser. S 3(3), 429–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ebin, D.G.: The equations of motion of a perfect fluid with free boundary are not well posed. Commun. Partial Differ. Equ. 12(10), 1175–1201 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elgindi, T., Lee, D.: Uniform Regularity for free-boundary navier-stokes equations with surface tension, arXiv:1403.0980 (2014)

  19. Frisch, U., Villone, B.: Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H 39, 325–351 (2014)

    Article  Google Scholar 

  20. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity surface water waves equation in dimension 3. Ann. Math. 175(2), 691–754 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates, arXiv:1401.1252 (2014)

  22. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions, arXiv:1404.7583 (2014)

  23. Iguchi, T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac. 44(2), 219–241 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iowa, M., Tani, A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg–de Vries equation. J. Am. Math. Soc. 4(2), 323–347 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kukavica, I., Tuffaha, A.: On the 2D free boundary Euler equation. Evol. Equ. Control Theory 1, 297–314 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kukavica, I., Tuffaha, A.: A regularity result for the incompressible Euler equation with a free interface. Appl. Math. Optim. 69, 337–358 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lichtenstein, L.: Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze, (German). Math. Z. 23(1), 89–154 (1925)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lindblad, H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun. Pure Appl. Math. 56(2), 153–197 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Masmoudi, N., Rousset, F.: Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations, arXiv:1202.0657 (2012)

  35. Nalimov, V.I.: The Cauchy–Poisson problem, Dinamika Splošn. Sredy (1974), no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 104–210, 254

  36. Schweizer, B.: On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 753–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shinbrot, M.: The initial value problem for surface waves under gravity. I. The simplest case. Indiana Univ. Math. J. 25(3), 281–300 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  38. A.I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. 128(170), no. 1, 82–109, 144 (1985)

  39. Shatah, Jalal, Zeng, Chongchun: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tani, A.: Small-time existence for the three-dimensional Navier–Stokes equations for an incompressible fluid with a free surface. Arch. Ration. Mech. Anal. 133(4), 299–331 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20(1), 32–43 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  44. Weber, H.M.: Über eine Transformation der hydrodynamischen Gleichungen. J. Angew. Math. 68, 286–292 (1868)

    Article  Google Scholar 

  45. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wu, S.: Global well posedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Xu, L., Zhang, Z.: On the free boundary problem to the two viscous immiscible fluids. J. Differ. Equ. 248(5), 1044–1111 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18(1), 49–96 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  50. Yosihara, H.: Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23(4), 649–694 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zheligovsky, V., Frisch, U.: Time-analyticity of Lagrangian particle trajectories in ideal fluid flow. J. Fluid Mech. 749, 404–430 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhang, P., Zhang, Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I.K. was supported in part by the NSF Grant DMS-1311943, while V.V. was supported in part by the A.P. Sloan fellowship and the NSF Grants DMS-1348193 and DMS-1514771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Tuffaha.

Appendix

Appendix

For convenience, we provide here two proofs of the Cauchy invariance identity

$$\begin{aligned} \epsilon _{ijk} \partial _{j} v^{m} \partial _{k}\eta ^{m} = \omega _0^i \mathrm{,\qquad {}} t\ge 0 \end{aligned}$$
(6.1)

The first proof, which establishes also the Weber formula, is from [10, 19, 51], however rewritten in the coordinate notation used in the present paper. The second proof, which we believe is new, is shorter and bypasses the Weber formula.

Proof 1 We start with the Weber formula [12, 44]

$$\begin{aligned} \partial _{t} ( v^{j}\partial _{k}\eta ^{j} ) = \partial _{k} \left( \frac{1}{2} |v|^2 - q \right) \mathrm{,\qquad {}} i=1,2,3 \end{aligned}$$
(6.2)

which is proven as follows. The left side equals

$$\begin{aligned}&v_t^{j} \partial _{k}\eta ^{j} + v^{j}\partial _{k}\eta _t^{j} = - a_{j}^{m}\partial _{m}q \partial _{k}\eta ^{j} + v^{j}\partial _{k}v^{j} \nonumber \\&\qquad {}\!\!\!\!= - \partial _{k} q +\frac{1}{2} \partial _{k}(|v|^2) = \partial _{k} \left( \frac{1}{2} |v|^2-q \right) \end{aligned}$$
(6.3)

where we used

$$\begin{aligned} a_{j}^{m} \partial _{k}\eta ^j = \delta _{jk} \mathrm{,\qquad {}} j,k=1,2,3 . \end{aligned}$$
(6.4)

Applying the curl operator to the identity (6.2), rewritten as

$$\begin{aligned} \partial _{t} \left( \begin{array}{c} v^{j}\partial _{1}\eta ^{j} \\ v^{j}\partial _{2}\eta ^{j} \\ v^{j}\partial _{3}\eta ^{j} \end{array} \right) = \nabla \left( \frac{1}{2} |v|^2-q \right) , \end{aligned}$$
(6.5)

we get

$$\begin{aligned} \partial _{t} \left( \epsilon _{ijk} \partial _{j}(v^{m}\partial _{k}\eta ^{m}) \right) =0 . \end{aligned}$$
(6.6)

Note that

$$\begin{aligned} \partial _{t} \left( \epsilon _{ijk} v^{m} \partial _{jk}\eta ^{m} \right) =0 \end{aligned}$$
(6.7)

since

$$\begin{aligned} \epsilon _{ijk} v^{m}\partial _{jk}\eta ^{m} = \epsilon _{ijk} v^{m}\partial _{kj}\eta ^{m} = - \epsilon _{ikj} v^{m}\partial _{kj}\eta ^{m} \end{aligned}$$
(6.8)

using \(\partial _{jk}=\partial _{kj}\) in the first equality and \(\epsilon _{ijk}=-\epsilon _{ikj}\) in the second. By (6.6) and (6.7), we obtain

$$\begin{aligned} \partial _{t} \left( \epsilon _{ijk} \partial _{j}v^{m}\partial _{k}\eta ^{m} \right) =0 . \end{aligned}$$
(6.9)

The expression in parentheses at \(t=0\) equals

$$\begin{aligned}&\epsilon _{ijk} \partial _{j}v^{m}(0)\partial _{k}\eta ^{m}(0) =\omega _0^i \mathrm{,\qquad {}} t\ge 0 \end{aligned}$$
(6.10)

and thus (6.1) follows.

Proof 2 Taking the time derivative, we obtain

$$\begin{aligned} \partial _{t}(\epsilon _{ijk} \partial _{j} v^{m} \partial _{k} \eta ^{m})&= \epsilon _{ijk} \partial _{j} v^{m} \partial _{k} v^{m} + \epsilon _{ijk} \partial _{j} v_{t}^{m} \partial _{k} \eta ^{m} \nonumber \\&= 0- \epsilon _{ijk} \partial _{j} (a^{l}_{m}\partial _{l} q) \partial _{k} \eta ^{m} \end{aligned}$$
(6.11)

where we replaced \(v^{m}_{t}\) by \(-a^{l}_{m}\partial _{l} q\) using the Euler equation. Now, by \(\partial _{j} a^{l}_{m} = a^{l}_{s} \partial _{jr}\eta ^{s} a^{r}_{m} \), which follows by differentiating \(a:\nabla \eta =I\), we get

$$\begin{aligned} \partial _{t}(\epsilon _{ijk} \partial _{j} v^{m} \partial _{k} \eta ^{m})&= - \epsilon _{ijk} a^{l}_{m}\partial _{jl} q \partial _{k} \eta ^{m} - \epsilon _{ijk} a^{l}_{s} \partial _{jr}\eta ^{s} a^{r}_{m} \partial _{l} q \partial _{k} \eta ^{m} \nonumber \\&= - \epsilon _{ijk} \partial _{jl} q \delta _{kl} - \epsilon _{ijk} a^{l}_{s} \partial _{jr} \eta ^{s} \partial _{l} q \delta _{kr} \nonumber \\&=- \epsilon _{ijk} \partial _{jk} q - \epsilon _{ijk} a^{l}_{s} \partial _{jk} \eta ^{s} \partial _{l} q \nonumber \\&= 0+0 =0 \end{aligned}$$
(6.12)

where we used in the second equality \(a:\nabla \eta =I\). Hence,

$$\begin{aligned} \epsilon _{ijk} \partial _{j} v^{m} \partial _{k} \eta ^{m} = \epsilon _{ijk} \partial _{j} v^{m}_{0} \partial _{k} \eta ^{m}(0) = \omega _{0}^i \end{aligned}$$

and the proof of (6.1) is concluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukavica, I., Tuffaha, A. & Vicol, V. On the Local Existence and Uniqueness for the 3D Euler Equation with a Free Interface. Appl Math Optim 76, 535–563 (2017). https://doi.org/10.1007/s00245-016-9360-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-016-9360-6

Keywords

Navigation