Skip to main content
Log in

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result

$$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$

for weak solutions in the energy space \(L_t^\infty L_x^2\), satisfying appropriate vorticity estimates. We also obtain improved integrability for the vorticity—which is to be compared with the DiPerna–Lions assumptions. The argument is completely local in nature as the result follows from the structural properties of the equation alone, while completely avoiding all sorts of boundary conditions and related gradient estimates. To the best of our knowledge, the approach we follow is new in the context of Euler equations and provides an alternative look at interior regularity issues. We also show how our method can be used to give a modified proof of the classical Serrin condition for the regularity of the Navier–Stokes equations in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2), 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Titi, E.: Euler equations for incompressible ideal fluids. Russ. Math. Surv. 62(3), 409–451 (2007)

    Article  MATH  Google Scholar 

  3. Bouchut, F., Crippa, G.: Lagrangian flows for vector fields with gradient given by a singular integral. J. Hyperbolic Differ. Equ. 10(2), 235–282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182(1), 127–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. (N.S.) 44(4), 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys. 165(1), 207–209 (1994)

  7. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)

    MathSciNet  MATH  Google Scholar 

  8. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. DiPerna, R., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escauriaza, L., Seregin, G., Šverák, V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169(2), 147–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fabes, E.B., Jones Jr., B.F., Rivière, N.M.: The initial value problem for the Navier–Stokes equations with data in \(L^{p}\). Arch. Ration. Mech. Anal. 45, 222–240 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gianazza, U., Vespri, V.: Parabolic De Giorgi classes of order p and the Harnack inequality. Calc. Var. Partial Differ. Equ. 26(3), 379–399 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950)

    Article  MATH  Google Scholar 

  14. Isett, P: Hölder continuous Euler flows in three dimensions with compact support in time. Annals of mathematics studies, vol. 196. Princeton University Press, Princeton (2017)

  15. Isett, P.: A proof of Onsager’s conjecture. arXiv:1608.08301 [math.AP], (2016)

  16. Kiselev, A., Šverák, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. (2) 180(3), 1205–1220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiselev, A., Zlatoš, A.: Blow up for the 2D Euler equation on some bounded domains. J. Differ. Equ. 259(7), 3490–3494 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ladyzhenskaya, O.A.: Solution in the large to the boundary-value problem for the Navier–Stokes equations in two space variables. Sov. Phys. Dokl. 123(3), 1128–1131 (1958)

    MathSciNet  MATH  Google Scholar 

  19. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  20. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  21. Moser, J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80(4), 931–954 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  23. Scheffer, V.: An inviscid flow with compact support in space–time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    MathSciNet  MATH  Google Scholar 

  25. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  27. Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41(4), 437–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vasseur, A.: A new proof of partial regularity of solutions to Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 14(5–6), 753–785 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work initiated while the authors were visiting the Mittag-Leffler Institute during the program “Evolutionary Problems” and was concluded while J.S. visited the University of Coimbra; we thank both institutions for the kind hospitality. J.S. was supported by the Academy of Finland Grant 259363 and by a Väisälä Foundation travel grant. J.M.U. was partially supported by the Centre for Mathematics of the University of Coimbra— UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Urbano.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siljander, J., Urbano, J.M. On the interior regularity of weak solutions to the 2-D incompressible Euler equations. Calc. Var. 56, 126 (2017). https://doi.org/10.1007/s00526-017-1231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1231-8

Mathematics Subject Classification

Navigation