Skip to main content
Log in

Global wellposedness of the 3-D full water wave problem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the problem of global in time existence and uniqueness of solutions of the 3-D infinite depth full water wave problem, in the setting that the interface tends to the horizontal plane, the velocity and acceleration on the interface tend to zero at spatial infinity. We show that the nature of the nonlinearity of the water wave equation is essentially of cubic and higher orders. For any initial interface that is sufficiently small in its steepness and velocity, we show that there exists a unique smooth solution of the full water wave problem for all time, and the solution decays at the rate 1/t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, D., Masmoudi, N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58(10), 1287–1315 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beale, T., Hou, T., Lowengrub, J.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46(9), 1269–1301 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birkhoff, G.: Helmholtz and Taylor instability. In: Proc. Symp. in Appl. Math. Vol. XIII, pp. 55–76

  4. Chen, S., Zhou, Y.: Decay rate of solutions to hyperbolic system of first order. Acta Math. Sin. Engl. Ser. 15(4), 471–484 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coutand, D., Shkoller, S.: Wellposedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coifman, R.R., Meyer, Y.: Au delá des opérateurs pseudodifférentials. Asterisque, vol. 57. Societé Math. de France, Paris (1978)

    Google Scholar 

  8. Coifman, R., McIntosh, A., Meyer, Y.: Líntegrale de Cauchy definit un operateur borne sur L 2 pour les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R., David, G., Meyer, Y.: La solution des conjectures de Calderón. Adv. Math. 48, 144–148 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig, W.: Non-existence of solitary water waves in three dimensions. Philos. Trans. R. Soc., Ser. A, Math. Phys. Eng. Sci. 360(1799), 2127–2135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. IMRN 3, 414–432 (2009)

    MathSciNet  Google Scholar 

  13. Germain, P., Masmoudi, N., Shatah, J.: Global solutions of the gravity water wave equation in dimension 3. Preprint July 2009

  14. Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  15. Iguchi, T.: Well-posedness of the initial value problem for capillary-gravity waves. Funkc. Ekvacioj 44(2), 219–241 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Kenig, C.: Elliptic boundary value problems on Lipschitz domains. In: Stein, E.M. (ed.) Beijing Lectures in Harmonic Analysis, pp. 131–183. Princeton Univ. Press, Princeton (1986)

    Google Scholar 

  17. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293–325 (1986)

    MathSciNet  Google Scholar 

  18. Lannes, D.: Well-posedness of the water-wave equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162(1), 109–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nalimov, V.I.: The Cauchy-Poisson problem. Dynamika Splosh. Sredy 18, 104–210 (1974) (in Russian)

    MathSciNet  Google Scholar 

  21. Ogawa, M., Tani, A.: Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12(12), 1725–1740 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sogge, C.: Lectures on Nonlinear Wave Equations. International Press, Boston (1995)

    MATH  Google Scholar 

  23. Shatah, J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math. 38, 685–696 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler’s equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  26. Strauss, W.: Nonlinear wave equations CBMS No. 73. AMS (1989)

  27. Sulem, C., Sulem, P.-L.: The Nonlinear Schrodinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    Google Scholar 

  28. Sun, S.M.: Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth. Proc. R. Soc. Lond., Ser. A 453(1961), 1153–1175 (1997)

    Article  MATH  Google Scholar 

  29. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. R. Soc. Lond., Ser. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  30. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MATH  Google Scholar 

  32. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yosihara, H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. RIMS Kyoto 18, 49–96 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, P., Zhang, Z.: On the free boundary problem of 3-D incompressible Euler equations. Commun. Pure Appl. Math. 61(7), 877–940 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijue Wu.

Additional information

Financial support in part by NSF grant DMS-0800194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S. Global wellposedness of the 3-D full water wave problem. Invent. math. 184, 125–220 (2011). https://doi.org/10.1007/s00222-010-0288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0288-1

Keywords

Navigation