Skip to main content
Log in

Assessing the relative contribution of vision to odometry via manipulations of gait in an over-ground homing task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The visual, vestibular, and haptic perceptual systems are each able to detect self-motion. Such information can be integrated during locomotion to perceive traversed distances. The process of distance integration is referred to as odometry. Visual odometry relies on information in optic flow patterns. For haptic odometry, such information is associated with leg movement patterns. Recently, it has been shown that haptic odometry is differently calibrated for different types of gaits. Here, we use this fact to examine the relative contributions of the perceptual systems to odometry. We studied a simple homing task in which participants travelled set distances away from an initial starting location (outbound phase), before turning and attempting to walk back to that location (inbound phase). We manipulated whether outbound gait was a walk or a gallop-walk. We also manipulated the outbound availability of optic flow. Inbound reports were performed via walking with eyes closed. Consistent with previous studies of haptic odometry, inbound reports were shorter when the outbound gait was a gallop-walk. We showed that the availability of optic flow decreased this effect. In contrast, the availability of optic flow did not have an observable effect when the outbound gait was walking. We interpreted this to suggest that visual odometry and haptic odometry via walking are similarly calibrated. By measuring the decrease in shortening in the gallop-walk condition, and scaling it relative to the walk condition, we estimated a relative contribution of optic flow to odometry of 41%. Our results present a proof of concept for a new, potentially more generalizable, method for examining the contributions of different perceptual systems to odometry, and by extension, path integration. We discuss implications for understanding human wayfinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdolvahab M, Carello C, Pinto C, Turvey MT, Frank TD (2015) Symmetry and order parameter dynamics of the human odometer. Biol Cybern 109(1):63–73

    Article  PubMed  Google Scholar 

  • Banton T, Stefanucci J, Durgin F, Fass A, Proffitt D (2005) The perception of walking speed in a virtual environment. Presence Teleoper Virtual Environ 14(4):394–406

    Article  Google Scholar 

  • Berthoz A, Israel I, Georges-Francois Toshihiro GRT (1995) Spatial memory of body linear displacement: what is being stored? Science 269:95–98

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Lappe M (1999) The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Exp Brain Res 127(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Brodoehl S, Klingner CM, Witte OW (2015) Eye closure enhances dark night perceptions. Sci Rep 5:10515

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos JL, Bülthoff HH (2012) Multimodal Integration during self motion in virtual reality. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press, Boca Raton, pp 603–627

    Google Scholar 

  • Campos JL, Butler JS, Bülthoff HH (2014) Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies. Exp Brain Res 232(10):3277–3289

    Article  PubMed  Google Scholar 

  • Carriot J, Brooks JX, Cullen KE (2013) Multimodal integration of self-motion cues in the vestibular system: active versus passive translations. J Neurosci 33(50):19555–19566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, McNamara TP, Kelly JW, Wolbers T (2017) Cue combination in human spatial navigation. Cogn Psychol 95:105–144

    Article  CAS  PubMed  Google Scholar 

  • Chrastil ER, Warren WH (2014) Does the human odometer use an extrinsic or intrinsic metric? Atten Percept Psychophys 76(1):230–246

    Article  PubMed  Google Scholar 

  • Cohen J, Cooper P, Ono A (1963) The hare and the tortoise: a study of the tea-effect in walking and running. Acta Physiol (Oxf) 21:387–393

    Google Scholar 

  • Dominici N, Daprati E, Nico D, Cappellini G, Ivanenko YP, Lacquaniti F (2009) Changes in the limb kinematics and walking-distance estimation after shank elongation: evidence for a locomotor body schema? J Neurophysiol 101(3):1419–1429

    Article  PubMed  Google Scholar 

  • Ellmore TM, McNaughton BL (2004) Human path integration by optic flow. Spat Cogn Comput 4(3):255–272

    Article  Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14(2):180–192

    Article  PubMed  Google Scholar 

  • Foo P, Duchon A, Warren WH, Tarr MJ (2007) Humans do not switch between path knowledge and landmarks when learning a new environment. Psychol Res 71(3):240–251

    Article  PubMed  Google Scholar 

  • Frenz H, Lappe M (2005) Absolute travel distance from optic flow. Vis Res 45(13):1679–1692

    Article  PubMed  Google Scholar 

  • Frissen I, Campos JL, Souman JL, Ernst MO (2011) Integration of vestibular and proprioceptive signals for spatial updating. Exp Brain Res 212(2):163–176

    Article  PubMed  Google Scholar 

  • Gallagher S, Cole J (1995) Body image and body schema in a deafferented subject. J Mind Behav 16:369–389

    Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Riverside Press, Cambridge

    Google Scholar 

  • Gibson JJ (1966) The Senses Considered as Perceptual Systems. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Glasauer S, Amorim MA, Vitte E, Berthoz A (1994) Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res 98(2):323–335

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Amorim MA, Viaud-Delmon I, Berthoz A (2002) Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Exp Brain Res 145(4):489–497

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Stein A, Gunther A, Flanagin V, Jahn K, Brandt T (2009) The effect of dual tasks in locomotor path integration. Ann N Y Acad Sci 1164(1):201–205

    Article  PubMed  Google Scholar 

  • Grasso R, Glasauer S, George-François P, Israël I (1999) Replication of passive whole-body linear displacements from inertial cues: facts and mechanisms. Ann N Y Acad Sci 871(1):345–366

    Article  CAS  PubMed  Google Scholar 

  • Harris LR, Herpers R, Jenkin M, Allison RS, Jenkin H, Kapralos B, Scherfgen D, Felsner S (2012) The relative contributions of radial and laminar optic flow to the perception of linear self-motion. J Vis 12(10):1–10

    Article  PubMed  Google Scholar 

  • Harrison SJ (2020) Human odometry with a two-legged hopping gait: a test of the gait symmetry theory. Ecol Psychol 32:58–78

    Article  Google Scholar 

  • Harrison SJ, Turvey MT (2010) Place learning by mechanical contact. J Exp Biol 213(9):1436–1442

    Article  PubMed  Google Scholar 

  • Harrison SJ, Turvey MT (2019) Odometry. In: Vonk J, Shackelford T (eds) Encyclopedia of animal cognition and behavior. Springer, Champaign

    Google Scholar 

  • Harrison SJ, Kuznetsov N, Breheim S (2013) Flexible kinesthetic distance perception: when do your arms tell you how far you have walked? J Mot Behav 45(3):239–247

    Article  PubMed  Google Scholar 

  • Harrison SJ, Bonnette S, Malone M (2020) For humans navigating without vision, navigation depends upon the layout of mechanically contacted ground surfaces. Exp Brain Res 238:917–930

    Article  PubMed  Google Scholar 

  • Isenhower RW, Kant V, Frank TD, Pinto CM, Carello C, Turvey MT (2012) Equivalence of human odometry by walk and run is indifferent to self-selected speed. J Mot Behav 44(1):47–52

    Article  PubMed  Google Scholar 

  • Israël I, Chapuis N, Glasauer S, Charade O, Berthoz A (1993) Estimation of passive horizontal linear whole-body displacement in humans. J Neurophysiol 70(3):1270–1273

    Article  PubMed  Google Scholar 

  • Israel I, Grasso R, Georges-Francois P, Tsuzuku T, Berthoz A (1997) Spatial memory and path integration studied by self-driven passive linear displacement I. Basic Prop J Neurophysiol 77(6):3180–3192

    Article  CAS  Google Scholar 

  • Kant V, Gordon JM, Abdolvahab M, Turvey MT, Carello C (2011) Load-induced gait transitions in way-finding. In: Charles E, Smart LJ (eds) Studies in perception and action XI. Taylor and Francis, New York, pp 147–151

    Google Scholar 

  • Kearns MJ (2003) The roles of vision and body senses in a homing task: the visual environment matters (unpublished doctoral dissertation). Brown University, Providence

    Google Scholar 

  • Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31(3):349–374

    Article  PubMed  Google Scholar 

  • Kim NG, Growney R, Turvey MT (1996a) Optical flow not retinal flow is the basis of wayfinding by foot. J Exp Psychol Hum Percept Perform 22(5):1279

    Article  Google Scholar 

  • Kim N-G, Turvey MT, Growney R (1996b) Wayfinding and the sampling of optical flow by eye movements. J Exp Psychol Hum Percept Perform 22(5):1314–1319

    Article  Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vis Res 26(1):161–179

    Article  CAS  PubMed  Google Scholar 

  • Koenderink JJ (1990) Some theoretical aspects of optic flow. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, pp 53–68

    Google Scholar 

  • Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523(7561):419–424

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180(1):35–48

    Article  PubMed  Google Scholar 

  • Lederman SJ, Klatzky RL, Collins A, Wardell J (1987) Exploring environments by hand or foot: time-based heuristics for encoding distance in movement space. J Exp Psychol Learn Mem Cogn 13:606–614

    Article  CAS  PubMed  Google Scholar 

  • Marigold DS, Patla AE (2007) Gaze fixation patterns for negotiating complex ground terrain. Neuroscience 144(1):302–313

    Article  CAS  PubMed  Google Scholar 

  • Marx E, Stephan T, Nolte A, Deutschländer A, Seelos KC, Dieterich M, Brandt T (2003) Eye closure in darkness animates sensory systems. Neuroimage 19(3):924–934

    Article  PubMed  Google Scholar 

  • Mittelstaedt H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871:334–344

    Article  CAS  PubMed  Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (2001) Idiothetic navigation in humans: estimation of path length. Exp Brain Res 139(3):318–332

    Article  CAS  PubMed  Google Scholar 

  • Panerai F, Droulez J, Kelada J-M, Kemeny A, Balligand E, Favre E (2001) Speed and safety distance control in truck driving: comparison of simulation and real-world environment. Paper presented at the 2001 DSC Driving Simulation Conference, Nice, France

  • Patla AE, Vickers JN (2003) How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp Brain Res 148(1):133–138

    Article  PubMed  Google Scholar 

  • Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vis Res 34:2917–2938

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88(3):1097–1118

    Article  CAS  PubMed  Google Scholar 

  • Philbeck JW, Woods AJ, Arthur J, Todd J (2008) Progressive locomotor recalibration during blind walking. Percept Psychophys 70(8):1459–1470

    Article  PubMed  PubMed Central  Google Scholar 

  • Redlick FP, Jenkin M, Harris LR (2001) Humans can use optic flow to estimate distance of travel. Vis Res 41(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (1999) Haptic perception of the distance walked when blindfolded. J Exp Psychol Hum Percept Perform 25(3):852

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11(2):139–148

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the odometer. Science 287(5454):851–853

    Article  CAS  PubMed  Google Scholar 

  • Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25(28):6499–6508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HJ, Campos JL, Chan GS (2004a) Multisensory integration in the estimation of relative path length. Exp Brain Res 154(2):246–254

    Article  PubMed  Google Scholar 

  • Sun HJ, Campos JL, Young M, Chan GS, Ellard CG (2004b) The contributions of static visual cues, nonvisual cues, and optic flow in distance estimation. Perception 33(1):49–65

    Article  PubMed  Google Scholar 

  • Thomson JA (1983) Is continuous visual monitoring necessary in visually guided locomotion? J Exp Psychol Hum Percept Perform 9(3):427–443

    Article  CAS  PubMed  Google Scholar 

  • Turvey MT, Carello C (2011) Obtaining information by dynamic (effortful) touching. Philos Trans R Soc B Biol Sci 366(1581):3123–3132

    Article  CAS  Google Scholar 

  • Turvey MT, Fonseca ST (2014) The medium of haptic perception: a tensegrity hypothesis. J Mot Behav 46(3):143–187

    Article  PubMed  Google Scholar 

  • Turvey MT, Romaniak-Gross C, Isenhower RW, Arzamarski R, Harrison SJ, Carello C (2009) Human odometry is gait-symmetry specific. Proc R Soc B Biol Sci 276:4309–4314

    Article  Google Scholar 

  • Turvey MT, Harrison SJ, Frank TD, Carello C (2012) Human odometry verifies the symmetry perspective on bipedal gaits. J Exp Psychol Hum Percept Perform 38:1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Warren WH (2003) Optic flow. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MI, Cambridge, pp 1247–1259

    Chapter  Google Scholar 

  • Warren WH (2007) Optic flow. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference, vol 2. Part II. Elsevier, Amsterdam, pp 219–230

    Google Scholar 

  • Webb B, Wystrach A (2016) Neural mechanisms of insect navigation. Current Opin Insect Sci 15:27–39

    Article  Google Scholar 

  • Withagen R, Michaels CF (2005) The role of feedback information for calibration and attunement in perceiving length by dynamic touch. J Exp Psychol Hum Percept Perform 31(6):1379–1390

    Article  PubMed  Google Scholar 

  • Xu P, Huang R, Wang J, Van Dam NT, Xie T, Dong Z, Fan J (2014) Different topological organization of human brain functional networks with eyes open versus eyes closed. Neuroimage 90:246–255

    Article  PubMed  Google Scholar 

  • Zhao M, Warren WH (2015) Environmental stability modulates the role of path integration in human navigation. Cognition 142:96–109

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the University of Nebraska at Omaha (Fund for Undergraduate Scholarly Experiences). Dr. Stergiou is supported by grants from the National Institutes of Health (NIGMS/P20GM109090, NIA/R15AG063106, and NINDS/R01NS114282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Harrison.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Francesco Lacquaniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, S.J., Reynolds, N., Bishoff, B. et al. Assessing the relative contribution of vision to odometry via manipulations of gait in an over-ground homing task. Exp Brain Res 239, 1305–1316 (2021). https://doi.org/10.1007/s00221-021-06066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-021-06066-z

Navigation