Skip to main content
Log in

For humans navigating without vision, navigation depends upon the layout of mechanically contacted ground surfaces

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Navigation can be haptically guided. In specific, tissue deformations arising from both limb motions during locomotion (i.e., gait patterns) and mechanical interactions between the limbs and the environment can convey information, detected by the haptic perceptual system, about how the body is moving relative to the environment. Here, we test hypotheses concerning the properties of mechanically contacted environments relevant to navigation of this kind. We studied blindfolded participants implicitly learning to perceive their location within environments that were physically encountered via walking on, stepping on, and probing ground surfaces with a cane. Environments were straight-line paths with elevated sections where the path either narrowed or remained the same width. We formed hypotheses concerning how these two environments would affect spatial updating and reorientation processes. In the constant pathwidth environment, homing task accuracy was higher and a manipulation of the elevated surface, to be either unchanged or (unbeknown to participants) shortened, biased the performance. This was consistent with our hypothesis of a metric recalibration scaled to elevated surface extent. In the narrowing pathwidth environment, elevated surface shortening did not bias performance. This supported our hypothesis of positional recalibration resulting from contact with the leading edge of the elevated surface. We discuss why certain environmental properties, such as path-narrowing, have significance for how one becomes implicitly oriented the surrounding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10:682–684

    PubMed  CAS  Google Scholar 

  • Brunec IK, Moscovitch M, Barense MD (2018) Boundaries shape cognitive representations of spaces and events. Trends Cogn Sci 22(7):637–650

    PubMed  Google Scholar 

  • Chen HC, Schultz AB, Ashton-Miller JA, Giordani B, Alexander NB, Guire KE (1996) Stepping over obstacles: dividing attention impairs performance of old more than young adults. J Gerontol A Biol Sci Med Sci 51(3):M116–M122

    PubMed  CAS  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat's spatial representation. Cognition 23(2):149–178

    PubMed  CAS  Google Scholar 

  • Cheng K, Huttenlocher J, Newcombe NS (2013) 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychon Bull Rev 20:1033–1054

    PubMed  Google Scholar 

  • Collett TS, Baron J (1994) Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368(6467):137–140

    Google Scholar 

  • Collett TS, Graham P (2004) Animal navigation: path integration, visual landmarks and cognitive maps. Curr Biol 14(12):R475–R477

    PubMed  CAS  Google Scholar 

  • Danafar S (2012) Mathematical modeling of a biological odometry. In: Miyake N, Peebles D, Cooper RP (eds) Proceedings of the 34th annual conference of the cognitive science society. Cognitive Science Society, Sapporo, pp 1446–1451

    Google Scholar 

  • Derdikman D, Moser EI (2010) A manifold of spatial maps in the brain. Trends Cogn Sci 14:561–569

    PubMed  Google Scholar 

  • Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser MB, Moser EI (2009) Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci 12:1325–1332

    PubMed  CAS  Google Scholar 

  • Ellmore TM, McNaughton BL (2004) Human path integration by optic flow. Spat Cogn Comput 4(3):255–272

    Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    PubMed  Google Scholar 

  • Etienne AS, Maurer R, Boulens V, Levy A, Rowe T (2004) Resetting the path integrator: a basic condition for route-based navigation. J Exp Biol 207:1491–1508

    PubMed  Google Scholar 

  • Fisherl CD (1993) Boredom at work: a neglected concept. Hum Relat 46(3):395–417

    Google Scholar 

  • Foo PS, Harrison M, Duchon A, Warren WH, Tarr MJ (2004) Humans follow landmarks over path integration. J Vis 4(8):892–892

    Google Scholar 

  • Foo P, Duchon A, Warren WH, Tarr MJ (2007) Humans do not switch between path knowledge and landmarks when learning a new environment. Psychol Res 71:240–251

    PubMed  Google Scholar 

  • Gallistel CR, Cramer AE (1996) Computations on metric maps in mammals: getting oriented and choosing a multi-destination route. J Exp Biol 199(1):211–217

    PubMed  CAS  Google Scholar 

  • Garden S, Cornoldi C, Logie RH (2002) Visuo-spatial working memory in navigation. Appl Cognit Psychol 16:35–50

    Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gouteux S, Spelke ES (2001) Children's use of geometry and landmarks to reorient in an open space. Cognition 81:119–148

    PubMed  CAS  Google Scholar 

  • Gothard KM, Skaggs WE, McNaughton BL (1996) Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J Neurosci 16:8027–8040

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison SJ (2020) Human odometry with a two-legged hopping gait: a test of the gait symmetry theory. Ecol Psychol 31:58–78

    Google Scholar 

  • Harrison SJ, Turvey MT (2010) Place learning by mechanical contact. J Exp Biol 213:1436–1442

    PubMed  Google Scholar 

  • Harrison SJ, Turvey MT (2019) Odometry. In: Vonk J, Shackelford TK (eds) Encyclopedia of animal cognition and behavior. Springer International Publishing, Switzerland

    Google Scholar 

  • Heft H (1996) The ecological approach to navigation: a Gibsonian perspective. In: Portugali J (ed) The construction of cognitive maps. Kluwer Academic, Boston, pp 105–132

    Google Scholar 

  • Hermer L, Spelke E (1996) Modularity and development: the case of spatial reorientation. Cognition 61:195–232

    PubMed  CAS  Google Scholar 

  • Hermer-Vazquez L, Spelke ES, Katsnelson AS (1999) Sources of flexibility in human cognition: dual-task studies of space and language. Cogn Psychol 39:3–36

    PubMed  CAS  Google Scholar 

  • Horner AJ, Bisby JA, Wang A, Bogus K, Burgess N (2016) The role of spatial boundaries in shaping long-term event representations. Cognition 154:151–164

    PubMed  PubMed Central  Google Scholar 

  • Israel I, Grasso R, Georges-Francois P, Tsuzuku T, Berthoz A (1997) Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties. J Neurophysiol 77(6):3180–3192

    PubMed  CAS  Google Scholar 

  • Kamil AC, Jones JE (2000) Geometric rule learning by Clark's nutcrackers (Nucifraga columbiana). J Exp Psychol Anim Behav Process 26(4):439–453

    PubMed  CAS  Google Scholar 

  • Kautzky M, Thurley K (2016) Estimation of self-motion duration and distance in rodents. Royal Soc Open Sci 3(5):160118

    Google Scholar 

  • Kelly DM, Spetch ML (2004) Reorientation in a two-dimensional environment: II. Do pigeons (Columba livia) encode the featural and geometric properties of a two-dimensional schematic of a room? J Comp Psychol 118(4):384–395

    Google Scholar 

  • Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523(7561):419–424

    PubMed  CAS  Google Scholar 

  • Krupic J, Bauza M, Burton S, Barry C, O’Keefe J (2015) Grid cell symmetry is shaped by environmental geometry. Nature 518:232–235

    PubMed  PubMed Central  CAS  Google Scholar 

  • Learmonth AE, Nadel L, Newcombe NS (2002) Children's use of landmarks: implications for modularity theory. Psychol Sci 13:337–341

    PubMed  Google Scholar 

  • Learmonth A, Newcombe NS, Sheridan M, Jones M (2008) Why size counts: children’s spatial reorientation in large and small enclosures. Dev Sci 11:414–426

    PubMed  Google Scholar 

  • Lee SA, Spelke E (2008) Children's use of geometry for reorientation. Dev Sci 11:743–749

    PubMed  Google Scholar 

  • Lee SA, Spelke ES (2010) Two systems of spatial representation underlying navigation. Exp Brain Res 206:179–188

    PubMed  PubMed Central  Google Scholar 

  • Lindberg E, Gärling T (1981) Acquisition of locational information about reference points during locomotion with and without a concurrent task: effects of number of reference points. Scand J Psychol 22:109–115

    PubMed  CAS  Google Scholar 

  • Loomis JM, Klatzky RL, Golledge RG, Philbeck JW (1999) Human navigation by path integration. In: Golledge RG (ed) Wayfinding: cognitive mapping and other spatial processes. Johns Hopkins, Baltimore, pp 125–151

    Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path-integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7(663):678

    Google Scholar 

  • McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199:173–185

    PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1999) The role of the otoliths in perception of the vertical and in path integration. Ann N Y Acad Sci 871(1):334–344

    PubMed  CAS  Google Scholar 

  • Mittelstaedt H (2000) Triple-loop model of path control by head direction and place cells. Biol Cybern 83(3):261–270

    PubMed  CAS  Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (2001) Idiothetic navigation in humans: estimation of path length. Exp Brain Res 139:318–332

    PubMed  CAS  Google Scholar 

  • Molstad C (1986) Choosing and coping with boring work. Urban Life 15:215–236

    Google Scholar 

  • Mou W, Zhang L (2014) Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions. Cognition 133:553–571

    PubMed  Google Scholar 

  • Nardi D, Bingman VP (2009) Pigeon (Columba livia) encoding of a goal location: the relative importance of shape geometry and slope information. J Comp Psychol 123:204–216

    PubMed  Google Scholar 

  • Navratilova Z, McNaughton BL (2014) Models of path integration in the hippocampal complex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg, pp 191–224

    Google Scholar 

  • Ouarti N, Berthoz A (2008) Multimodal fusion in self-motion perception using wavelets and quaternions. In: Deuxième conférence française de Neurosciences Computationnelles, Neurocomp08

  • Patel P, Lamar M, Bhatt T (2014) Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience 260:140–148

    PubMed  CAS  Google Scholar 

  • Pettijohn KA, Radvansky GA (2016) Walking through doorways causes forgetting: event structure or updating disruption? Q J Exp Psychol 69(11):2119–2129

    Google Scholar 

  • Plummer-D’Amato P, Altmann LJ, Saracino D, Fox E, Behrman AL, Marsiske M (2008) Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture 27:683–688

    PubMed  Google Scholar 

  • Radvansky GA, Copeland DE (2006) Walking through doorways causes forgetting: situation models and experienced space. Mem Cognit 34(5):1150–1156

    PubMed  Google Scholar 

  • Ratliff KR, Newcombe NS (2008) Reorienting when cues conflict: evidence for an adaptive-combination view. Psychol Sci 19:1301–1307

    PubMed  Google Scholar 

  • Santer RD, Hebets EA (2009) Tactile learning by a whip spider, Phrynus marginemaculatus CL Koch (Arachnida, Amblypygi). J Comp Physiol A 195(4):393–399

    Google Scholar 

  • Schwartz M (1999) Haptic perception of the distance walked when blindfolded. J Exp Psych Hum Percept Perform 25:852–865

    CAS  Google Scholar 

  • Seidl T, Wehner R (2006) Visual and tactile learning of ground structures in desert ants. J Exp Biol 209:3336–3344

    PubMed  Google Scholar 

  • Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11(2):139–148

    Google Scholar 

  • Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868

    PubMed  CAS  Google Scholar 

  • Spetch ML, Kelly DM (2006) Comparative spatial cognition: processes in landmark and surface-based place finding. In: Wasserman EA, Zentall TA (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, New York, pp 125–151

    Google Scholar 

  • Spetch ML, Cheng K, MacDonald SE, Linkenhoker BA, Kelly DM, Doerkson SR (1997) Use of landmark configuration in pigeons and humans: II. Generality across search tasks. J Comp Psychol 111(1):14–24

    Google Scholar 

  • Spiers HJ, Hayman RM, Jovalekic A, Marozzi E, Jeffery KJ (2013) Place field repetition and purely local remapping in a multicompartment environment. Cereb Cortex 25(1):10–25

    PubMed  PubMed Central  Google Scholar 

  • Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the odometer. Science 287:851–853

    PubMed  CAS  Google Scholar 

  • Sturz BR, Green ML, Gaskin KA, Evans AC, Graves AA, Roberts JE (2013) More than a feeling: incidental learning of array geometry by blindfolded adult humans revealed through touch. J Exp Biol 216(4):587–593

    PubMed  Google Scholar 

  • Sturz BR, Gaskin KA, Roberts JE (2014) Incidental encoding of enclosure geometry does not require visual input: evidence from blindfolded adults. Mem Cogn 42(6):935–942

    Google Scholar 

  • Sutton JE, Twyman AD, Joanisse MF, Newcombe NS (2012) Geometry three ways: an fMRI investigation of geometric information processing during reorientation. J Exp Psychol Learn Mem Cogn 38:1530–1541

    PubMed  Google Scholar 

  • Tommasi L, Thinus-Blanc C (2004) Generalization in place learning and geometry knowledge in rats. Learn Mem 11:153–161

    PubMed  Google Scholar 

  • Turvey MT, Carello C (2011) Obtaining information by dynamic (effortful) touching. Phil Trans R Soc B 366(1581):3123–3132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Turvey MT, Romaniak-Gross C, Isenhower RW, Arzamarski R, Harrison SJ, Carello C (2009) Human odometry is gait-symmetry specific. Proc R Soc B 276:4309–4314

    PubMed  PubMed Central  Google Scholar 

  • Uttal DH, Sandstrom LB, Newcombe NS (2006) One hidden object, two spatial codes: young children's use of relational and vector coding. J Cogn Dev 7:503–525

    Google Scholar 

  • Uttal DH, Friedman A, Hand LL, Warren C (2010) Learning fine-grained and category information in navigable real-world space. Mem Cognit 38(8):1026–1040

    PubMed  Google Scholar 

  • Webb B, Wystrach A (2016) Neural mechanisms of insect navigation. Curr Opin Insect Sci 15:27–39

    PubMed  Google Scholar 

  • Witt JK, Stefanucci JK, Riener CR, Proffitt DR (2007) Seeing beyond the target: environmental context affects distance perception. Perception 36(12):1752–1768

    PubMed  Google Scholar 

  • Zhang L, Mou W (2017) Piloting systems reset path integration systems during position estimation. J Exp Psychol Learn Mem Cogn 43(3):472

    PubMed  Google Scholar 

  • Zhao M, Warren WH (2015) How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychol Sci 26:915–924

    PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Harrison.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by Melvyn A. Goodale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrison, S.J., Bonnette, S. & Malone, M. For humans navigating without vision, navigation depends upon the layout of mechanically contacted ground surfaces. Exp Brain Res 238, 917–930 (2020). https://doi.org/10.1007/s00221-020-05767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05767-1

Keywords

Navigation