Skip to main content
Log in

Influence of neurovascular mechanisms on response to tDCS: an exploratory study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The beneficial effects of transcranial direct current stimulation (tDCS) for stroke rehabilitation are limited by the variability in changes in corticomotor excitability (CME) after tDCS. Neuronal activity is closely related to cerebral blood flow; however, the cerebral hemodynamics of neuromodulation in relation to neural effects have been less explored. In this study, we examined the effects of tDCS on cerebral blood velocity (CBv) in chronic stroke survivors using transcranial Doppler (TCD) ultrasound in relation to changes in CME and described the neurovascular characteristics of tDCS responders. Middle cerebral artery (MCA) CBv, cerebrovascular resistance (CVRi) and other cerebral hemodynamics-related variables were continuously measured before and after 15 min of 1 mA anodal tDCS to the lesioned lower limb M1. tDCS did not modulate CBv in the whole group and upon TMS-based stratification of responders and non-responders. However, at baseline, responders demonstrated lower CME levels, lower CBv and higher CVRi as compared to non-responders. These results indicate a possible difference in baseline CME and CBv in tDCS responders that may influence their response to neuromodulation. Future trials with a large sample size and repeated baseline measurements may help validate these findings and establish a relationship between neuromodulation and neurovascular mechanisms in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data accessibility

Deidentified data that support the findings of this study will be available on reasonable request from the corresponding author (S.M.) after completion of secondary analyses.

Abbreviations

CME:

Corticomotor excitability

CBF:

Cerebral blood flow

CBv:

Cerebral blood velocity

MBv:

Mean blood velocity

CVRi:

Cerebrovascular resistance index

PI:

Pulsatility index

Et-CO2 :

End-tidal carbon dioxide

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

MCA:

Middle cerebral artery

References

  • Aoi MC, Hu K, Lo M-T, Selim M, Olufsen MS, Novak V (2012) Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke. PLoS One 7:e46794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazan R, Braga GP, Luvizutto GJ et al (2015) Evaluation of the temporal acoustic window for transcranial Doppler in a multi-ethnic population in Brazil. Ultrasound Med Biol 41:2131–2134. https://doi.org/10.1016/j.ultrasmedbio.2015.04.008

    Article  PubMed  Google Scholar 

  • Boddington L, Reynolds J (2017) Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul 10:214–222

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Azevedo E, Sorond F (2018) Cerebral autoregulation in stroke. Curr Atheroscler Rep 20:37. https://doi.org/10.1007/s11883-018-0739-5

    Article  PubMed  Google Scholar 

  • Chang MC, Kim DY, Park DH (2015) Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul 8:561–566

    Article  PubMed  Google Scholar 

  • Chew T, Ho KA, Loo CK (2015) Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul 8:1130–1137. https://doi.org/10.1016/j.brs.2015.07.031

    Article  PubMed  Google Scholar 

  • Cipolla MJ (2009) The cerebral circulation. Morgan & Claypool Life Sciences, San Rafael, CA

    Book  Google Scholar 

  • Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB, Network ICAR (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab 36:665–680

    Article  PubMed  PubMed Central  Google Scholar 

  • De Berker AO, Bikson M, Bestmann S (2013) Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Front Hum Neurosci 7:613

    Article  PubMed  PubMed Central  Google Scholar 

  • de Riva N, Budohoski KP, Smielewski P et al (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17:58–66

    Article  PubMed  Google Scholar 

  • Devanathan D, Madhavan S (2016) Effects of anodal tDCS of the lower limb M1 on ankle reaction time in young adults. Exp Brain Res 234:377–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Dissanayaka T, Zoghi M, Farrell M, Egan GF, Jaberzadeh S (2017) Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur J Neurosci 46:1968–1990. https://doi.org/10.1111/ejn.13640

    Article  PubMed  Google Scholar 

  • Elting JW, Aries MJH, van der Hoeven JH, Vroomen PCAJ, Maurits NM (2014) Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys 36:585–591. https://doi.org/10.1016/j.medengphy.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  • Giordano J, Bikson M, Kappenman ES et al (2017) Mechanisms and effects of transcranial direct current stimulation. Dose Response 15:1559325816685467

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorli E, Tognazzi S, Briscese L et al (2015) Transcranial direct current stimulation and cerebral vasomotor reserve: a study in healthy subjects. J Neuroimaging 25:571–574

    Article  PubMed  Google Scholar 

  • Hennerici M, Rautenberg W, Sitzer G, Schwartz A (1987) Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity—part 1. Examination technique and normal values. Surg Neurol 27:439–448

    Article  CAS  PubMed  Google Scholar 

  • Ivey FM, Ryan AS, Hafer-Macko CE, Macko RF (2011) Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke 42:1994–2000

    Article  PubMed  Google Scholar 

  • Iyer PC, Madhavan S (2018) Non-invasive brain stimulation in the modulation of cerebral blood flow after stroke: a systematic review of Transcranial Doppler studies. Clin Neurophysiol 129:2544–2551. https://doi.org/10.1016/j.clinph.2018.09.019

    Article  PubMed  Google Scholar 

  • Jørgensen LG (1995) Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scand Suppl 625:1–44

    PubMed  Google Scholar 

  • Kamke MR, Hall MG, Lye HF et al (2012) Visual attentional load influences plasticity in the human motor cortex. J Neurosci 32:7001–7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamke MR, Ryan AE, Sale MV, Campbell ME, Riek S, Carroll TJ, Mattingley JB (2014) Visual spatial attention has opposite effects on bidirectional plasticity in the human motor cortex. J Neurosci 34:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang N, Summers JJ, Cauraugh JH (2015) Transcranial direct current stimulation facilitates motor learning post-stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 87:345–355

    Article  PubMed  Google Scholar 

  • Kassab Mounzer Y, Majid Arshad, Farooq Muhammad U, Azhary Hend, Hershey Linda A, Bednarczyk Edward M, Graybeal Dion F, Johnson Mark D (2007) Transcranial Doppler: an introduction for primary care physicians. J Am Board Fam Med 20:65–71

    Article  PubMed  Google Scholar 

  • Kontos HA (1989) Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 20:1–3

    Article  CAS  PubMed  Google Scholar 

  • Krainik A, Hund-Georgiadis M, Zysset S, Von Cramon DY (2005) Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 36:1146–1152

    Article  PubMed  Google Scholar 

  • Krakauskaite S, Thibeault C, LaVangie J et al. (2018) Normative ranges of transcranial doppler metrics. In: Heldt T (ed) Intracranial pressure & neuromonitoring XVI. Springer, Berlin, pp 269–273

    Chapter  Google Scholar 

  • Krejza J, Swiat M, Pawlak MA, Oszkinis G, Weigele J, Hurst RW, Kasner S (2007) Suitability of temporal bone acoustic window: conventional TCD versus transcranial color-coded duplex sonography. J Neuroimaging 17:311–314. https://doi.org/10.1111/j.1552-6569.2007.00117.x

    Article  PubMed  Google Scholar 

  • Labruna L, Jamil A, Fresnoza S et al (2016) Efficacy of anodal transcranial direct current stimulation is related to sensitivity to transcranial magnetic stimulation. Brain Stimul 9:8–15

    Article  PubMed  Google Scholar 

  • Lang N, Siebner HR, Ward NS et al (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22:495–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecrux C, Hamel E (2011) The neurovascular unit in brain function and disease. Acta Physiol 203:47–59

    Article  CAS  Google Scholar 

  • Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00181

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew S-L, Anglin JM, Banks NW et al (2017) The anatomical tracings of lesions after stroke (ATLAS) dataset—release 1.1. bioRxiv: 179614. https://doi.org/10.1101/179614

  • Lin W, Hao Q, Rosengarten B, Leung W, Wong K (2011) Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease. Eur J Neurol 18:731–736

    Article  CAS  PubMed  Google Scholar 

  • List J, Lesemann A, Kubke JC, Kulzow N, Schreiber SJ, Floel A (2015) Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology 84:626–628. https://doi.org/10.1212/wnl.0000000000001230

    Article  PubMed  Google Scholar 

  • López-Alonso V, Cheeran B, Río-Rodríguez D, Fernández-del-Olmo M (2014) Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul Basic Transl Clin Res Neuromodul 7:372–380. https://doi.org/10.1016/j.brs.2014.02.004

    Article  Google Scholar 

  • Madhavan S, Stinear JW (2010) Focal and bidirectional modulation of lower limb motor cortex using anodal transcranial direct current stimulation. Brain Stimul 3:42–50. https://doi.org/10.1016/j.brs.2009.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Madhavan S, Weber KA, Stinear JW (2011) Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 209:9–17. https://doi.org/10.1007/s00221-010-2511-0

    Article  PubMed  Google Scholar 

  • Madhavan S, Sriraman A, Freels S (2016a) Reliability and variability of tDCS induced changes in the lower limb motor cortex. Brain Sci 6:26

    Article  PubMed Central  Google Scholar 

  • Madhavan S, Stinear JW, Kanekar N (2016b) Effects of a single session of high intensity interval treadmill training on corticomotor excitability following stroke: implications for therapy. Neural Plast 2016:8. https://doi.org/10.1155/2016/1686414

    Article  Google Scholar 

  • Maeda H, Matsumoto M, Handa N et al (1993) Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method. Stroke 24:670–675

    Article  CAS  PubMed  Google Scholar 

  • Matteis M, Caltagirone C, Troisi E, Vernieri F, Monaldo BC, Silvestrini M (2001) Changes in cerebral blood flow induced by passive and active elbow and hand movements. J Neurol 248:104–108. https://doi.org/10.1007/s004150170243

    Article  CAS  PubMed  Google Scholar 

  • Matteis M, Vernieri F, Troisi E, Pasqualetti P, Tibuzzi F, Caltagirone C, Silvestrini M (2003) Early cerebral hemodynamic changes during passive movements and motor recovery after stroke. J Neurol 250:810–817. https://doi.org/10.1007/s00415-003-1082-4

    Article  PubMed  Google Scholar 

  • McSwain SD, Hamel DS, Smith PB, Gentile MA, Srinivasan S, Meliones JN, Cheifetz IM (2010) End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir Care 55:288–293

    PubMed  Google Scholar 

  • Merzagora AC, Foffani G, Panyavin I, Mordillo-Mateos L, Aguilar J, Onaral B, Oliviero A (2010) Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 49:2304–2310

    Article  CAS  PubMed  Google Scholar 

  • Muoio V, Persson P, Sendeski M (2014) The neurovascular unit—concept review. Acta Physiol 210:790–798

    Article  CAS  Google Scholar 

  • Nord C, Lally N, Charpentier C (2013) Harnessing electric potential: DLPFC tDCS induces widespread brain perfusion changes. Front Syst Neurosci 7:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak-Flück D, Ainslie PN, Bain AR et al (2018) Effect of healthy ageing on cerebral blood flow, CO2 reactivity and neurovascular coupling during exercise. J Appl Physiol 125:1917–1930

    Article  PubMed  CAS  Google Scholar 

  • O’rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    Article  PubMed  Google Scholar 

  • Parton A, Malhotra P, Husain M (2004) Hemispatial neglect. J Neurol Neurosurg Psychiatry 75:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne S (2016) Cerebral autoregulation: control of blood flow in the brain. Springer, Berlin

    Book  Google Scholar 

  • Perry BG, Schlader ZJ, Barnes MJ, Cochrane DJ, Lucas S, MüNDEL T (2014) Hemodynamic response to upright resistance exercise: effect of load and repetition. Med Sci Sports Exerc 46:479–487

    Article  PubMed  Google Scholar 

  • Puri R, Hinder MR, Fujiyama H, Gomez R, Carson RG, Summers JJ (2015) Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Front Aging Neurosci 7:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purkayastha S, Sorond F (2012) Transcranial Doppler ultrasound: technique and application. Semin Neurol 32:411–420. https://doi.org/10.1055/s-0032-1331812

    Article  PubMed  Google Scholar 

  • Rosengarten B, Huwendiek O, Kaps M (2001) Neurovascular coupling and cerebral autoregulation can be described in terms of a control system. Ultrasound Med Biol 27:189–193

    Article  CAS  PubMed  Google Scholar 

  • Salinet ASM, Panerai RB, Robinson TG (2012) Effects of active, passive and motor imagery paradigms on cerebral and peripheral hemodynamics in older volunteers: a functional TCD study. Ultrasound Med Biol 38:997–1003. https://doi.org/10.1016/j.ultrasmedbio.2012.02.016

    Article  PubMed  Google Scholar 

  • Salinet AS, Haunton VJ, Panerai RB, Robinson TG (2013) A systematic review of cerebral hemodynamic responses to neural activation following stroke. J Neurol 260:2715–2721

    Article  PubMed  Google Scholar 

  • Sivaramakrishnan A, Madhavan S (2018) Absence of a transcranial magnetic stimulation-induced lower limb corticomotor response does not affect walking speed in chronic stroke survivors. Stroke 49(8):2004–2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan A, Tahara-Eckl L, Madhavan S (2016) Spatial localization and distribution of the TMS-related ‘hotspot’of the tibialis anterior muscle representation in the healthy and post-stroke motor cortex. Neurosci Lett 627:30–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirl JD, Tzeng Y-C, Monteleone BJ, Ainslie PN (2014) Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans. J Appl Physiol 116:1614–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn MK, Jee SJ, Kim YW (2013) Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med 37:759–765. https://doi.org/10.5535/arm.2013.37.6.759

    Article  PubMed  PubMed Central  Google Scholar 

  • Sriraman A, Oishi T, Madhavan S (2014) Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Res 1581:23–29. https://doi.org/10.1016/j.brainres.2014.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53

    Article  PubMed  Google Scholar 

  • Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, Tracey I (2013) Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J Neurosci 33:11425–11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strube W, Bunse T, Malchow B, Hasan A (2015) Efficacy and interindividual variability in motor-cortex plasticity following anodal tDCS and paired-associative stimulation. Neural Plast 2015:530423

    PubMed  PubMed Central  Google Scholar 

  • Strube W, Bunse T, Nitsche MA et al (2016) Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants. Physiol Rep 4:e12884

    Article  PubMed  PubMed Central  Google Scholar 

  • Suri MFK, Georgiadis AL, Tariq N, Vazquez G, Qureshi N, Qureshi AI (2011) Estimated prevalence of acoustic cranial windows and intracranial stenosis in the US elderly population: ultrasound screening in adults for intracranial disease study. Neuroepidemiology 37:64–71. https://doi.org/10.1159/000327757

    Article  PubMed  Google Scholar 

  • Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Takeda K, Otaka Y et al (2011) Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair 25:565–569

    Article  PubMed  Google Scholar 

  • Tegeler CH, Crutchfield K, Katsnelson M et al (2013) Transcranial Doppler velocities in a large, healthy population. J Neuroimaging 23:466–472

    Article  PubMed  Google Scholar 

  • Tremblay S, Larochelle-Brunet F, Lafleur LP, El Mouderrib S, Lepage JF, Théoret H (2016) Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability. Eur J Neurosci 44:2184–2190

    Article  PubMed  Google Scholar 

  • Ugur HC, Kahilogullari G, Coscarella E et al (2005) Arterial vascularization of primary motor cortex (precentral gyrus). Surg Neurol 64:S48–S52. https://doi.org/10.1016/j.surneu.2005.07.049

    Article  PubMed  Google Scholar 

  • van Beek AH, Claassen JA, Rikkert MGO, Jansen RW (2008) Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab 28:1071–1085. https://doi.org/10.1038/jcbfm.2008.13

    Article  PubMed  Google Scholar 

  • Vernieri F, Assenza G, Maggio P et al (2010) Cortical neuromodulation modifies cerebral vasomotor reactivity. Stroke 41:2087–2090. https://doi.org/10.1161/strokeaha.110.583088

    Article  PubMed  Google Scholar 

  • Wiethoff S, Hamada M, Rothwell JC (2014) Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul 7:468–475. https://doi.org/10.1016/j.brs.2014.02.003

    Article  PubMed  Google Scholar 

  • Williams CAL, Panerai RB, Robinson TG, Haunton VJ (2017) Transcranial Doppler ultrasonography in the assessment of neurovascular coupling responses to cognitive examination in healthy controls: a feasibility study. J Neurosci Methods 284:57–62. https://doi.org/10.1016/j.jneumeth.2017.04.013

    Article  CAS  PubMed  Google Scholar 

  • Willie CK, Colino FL, Bailey DM et al (2011) Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 196:221–237. https://doi.org/10.1016/j.jneumeth.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Alsop DC, Schlaug G (2011) Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage 58:26–33

    Article  PubMed  Google Scholar 

  • Ziemann U, Siebner HR (2008) Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 1:60–66. https://doi.org/10.1016/j.brs.2007.08.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of Brain Plasticity Lab. This work was partly supported by a grant funded by the National Institute of Health (NIH) R01HD075777 (SM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Madhavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, P.C., Rosenberg, A., Baynard, T. et al. Influence of neurovascular mechanisms on response to tDCS: an exploratory study. Exp Brain Res 237, 2829–2840 (2019). https://doi.org/10.1007/s00221-019-05626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05626-8

Keywords

Navigation