Skip to main content

Advertisement

Log in

Cerebral Autoregulation in Stroke

  • Cardiovascular Disease and Stroke (S. Prabhakaran, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cerebral autoregulation (CA) is a mechanism that maintains cerebral blood flow constant despite fluctuations in systemic arterial blood pressure. This review will focus on recent studies that measured CA non-invasively in acute cerebrovascular events, a feature unique to the transcranial Doppler ultrasound. We will summarize the rationale for CA assessment in acute cerebrovascular disorders and specifically evaluate the existing data on the value of CA measures in relation to clinical severity, guiding management decisions, and prognostication.

Recent Findings

Existing data suggest that CA is generally impaired in various cerebrovascular disorders. In patients with small vessel ischemic stroke, CA has been shown to be impaired in both hemispheres, whereas in large territorial strokes, CA impairment has been limited to the affected hemisphere. In these latter patients, impaired CA is also predictive of secondary complications such as hemorrhagic transformation and cerebral edema, hence worse functional outcome. In patients with carotid stenosis, impaired CA may also be associated with a higher ipsilateral hemispheric stroke risk. CA is also strongly linked to outcome in patients with intracranial hemorrhage. In patients with intraparenchymal hemorrhage, CA impairment correlated with clinical and imaging severity, whereas in those with subarachnoid hemorrhage, CA measures have a predictive value for development of delayed cerebral ischemia and radiographic vasospasm.

Summary

Assessment of CA is increasingly more accessible in acute cerebrovascular disorders and promises to be a valuable measure in guiding hemodynamic management and predicting secondary complication, thus enhancing the care of these patients in the acute setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of Major Importance

  1. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    Article  PubMed  CAS  Google Scholar 

  2. Panerai RB. Assessment of cerebral pressure autoregulation in humans—a review of measurement methods. Physiol Meas. 1998;19(3):305–38.

    Article  PubMed  CAS  Google Scholar 

  3. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26(6):1014–9.

    Article  PubMed  CAS  Google Scholar 

  4. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  5. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793–7.

    Article  PubMed  CAS  Google Scholar 

  6. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    PubMed  CAS  Google Scholar 

  7. Fog M. Cerebral circulation: the reaction of the pial arteries to a fall in blood pressure. Arch Neurol Psychiatr. 1937;37(2):351–64.

    Article  Google Scholar 

  8. Forbes HS: Cerebral circulation. I. Observation and measurement of pial vessels. Archives of Neurology & Psychiatry 1928, 19:749–761.

  9. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39(2):183–238.

    Article  PubMed  CAS  Google Scholar 

  10. Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Azevedo E, Castro P: Cerebral autoregulation, vol. ix. Cambridge: Cambridge University Press; 2016.

  12. Dawson SL, Blake MJ, Panerai RB, Potter JF. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis. 2000;10(2):126–32.

    Article  PubMed  CAS  Google Scholar 

  13. Tiecks FP, Douville C, Byrd S, Lam AM, Newell DW. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke. 1996;27(7):1177–82.

    Article  PubMed  CAS  Google Scholar 

  14. Tiecks FP, Lam AM, Matta BF, Strebel S, Douville C, Newell DW. Effects of the valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler study. Stroke. 1995;26(8):1386–92.

    Article  PubMed  CAS  Google Scholar 

  15. Giller CA. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir. 1991;108(1–2):7–14.

    Article  PubMed  CAS  Google Scholar 

  16. Ratsep T, Asser T. Cerebral hemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg. 2001;95(3):393–401.

    Article  PubMed  CAS  Google Scholar 

  17. Sorond FA, Serrador JM, Jones RN, Shaffer ML, Lipsitz LA. The sit-to-stand technique for the measurement of dynamic cerebral autoregulation. Ultrasound Med Biol. 2009;35(1):21–9.

    Article  PubMed  Google Scholar 

  18. Panerai RB, Dawson SL, Potter JF. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Phys. 1999;277(3 Pt 2):H1089–99.

    CAS  Google Scholar 

  19. Diehl RR, Linden D, Lucke D, Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke. 1995;26(10):1801–4.

    Article  PubMed  CAS  Google Scholar 

  20. Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G. Assessment of autoregulation by means of periodic changes in blood pressure. Stroke. 1995;26(5):834–7.

    Article  PubMed  CAS  Google Scholar 

  21. Blaber AP, Bondar RL, Stein F, Dunphy PT, Moradshahi P, Kassam MS, et al. Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients. Stroke. 1997;28(9):1686–92.

    Article  PubMed  CAS  Google Scholar 

  22. Serrador JM, Sorond FA, Vyas M, Gagnon M, Iloputaife ID, Lipsitz LA. Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains. J Appl Physiol. 2005;98(1):151–9.

    Article  PubMed  Google Scholar 

  23. Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Phys. 1998;274(1 Pt 2):H233–41.

    CAS  Google Scholar 

  24. Panerai RB, Haunton VJ, Hanby MF, Salinet AS, Robinson TG. Statistical criteria for estimation of the cerebral autoregulation index (ARI) at rest. Physiol Meas. 2016;37(5):661–72.

    Article  PubMed  CAS  Google Scholar 

  25. •• Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB, International Cerebral Autoregulation Research N. Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab. 2016; International consensus for measuring and resporting TFA measures.

  26. Panerai RB, Rennie JM, Kelsall AW, Evans DH. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med Biol Eng Comput. 1998;36(3):315–22.

    Article  PubMed  CAS  Google Scholar 

  27. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.

    Article  PubMed  CAS  Google Scholar 

  28. • Hamner JW, Tan CO. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 2014;45(6):1771–7. New method for assessing CA that allows non-linear relashionship of CBFV and MAP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Paulson OB. Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology. 1970;20(1):63–77.

    Article  PubMed  CAS  Google Scholar 

  30. Hoedt-Rasmussen K, Skinhoj E, Paulson O, Ewald J, Bjerrum JK, Fahrenkrug A, et al. Regional cerebral blood flow in acute apoplexy. The “luxury perfusion syndrome” of brain tissue. Arch Neurol. 1967;17(3):271–81.

    Article  PubMed  CAS  Google Scholar 

  31. Georgiadis D, Schwarz S, Evans DH, Schwab S, Baumgartner RW. Cerebral autoregulation under moderate hypothermia in patients with acute stroke. Stroke. 2002;33(12):3026–9.

    Article  PubMed  CAS  Google Scholar 

  32. • Castro P, Azevedo E, Serrador J, Rocha I, Sorond F. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation. J Neurol Sci. 2017;372:256–61. CA status at a very early stage (< 6 h) predicts major complications such as hemorrhagic transformation and cerebral edema.

    Article  PubMed  Google Scholar 

  33. Dawson SL, Panerai RB, Potter JF. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke. Cerebrovasc Dis. 2003;16(1):69–75.

    Article  PubMed  Google Scholar 

  34. Salinet AS, Panerai RB, Robinson TG. The longitudinal evolution of cerebral blood flow regulation after acute ischaemic stroke. Cerebrovasc Dis Extra. 2014;4(2):186–97.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Atkins ER, Brodie FG, Rafelt SE, Panerai RB, Robinson TG. Dynamic cerebral autoregulation is compromised acutely following mild ischaemic stroke but not transient ischaemic attack. Cerebrovasc Dis. 2010;29(3):228–35.

    Article  PubMed  Google Scholar 

  36. Reinhard M, Roth M, Guschlbauer B, Harloff A, Timmer J, Czosnyka M, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke. 2005;36(8):1684–9.

    Article  PubMed  CAS  Google Scholar 

  37. Immink RV, van Montfrans GA, Stam J, Karemaker JM, Diamant M, van Lieshout JJ. Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke. Stroke. 2005;36(12):2595–600.

    Article  PubMed  Google Scholar 

  38. Petersen NH, Ortega-Gutierrez S, Reccius A, Masurkar A, Huang A, Marshall RS. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke. Cerebrovasc Dis. 2015;39(2):144–50.

    Article  PubMed  Google Scholar 

  39. Reinhard M, Wihler C, Roth M, Harloff A, Niesen WD, Timmer J, et al. Cerebral autoregulation dynamics in acute ischemic stroke after rtPA thrombolysis. Cerebrovasc Dis. 2008;26(2):147–55.

    Article  PubMed  Google Scholar 

  40. Eames PJ, Blake MJ, Dawson SL, Panerai RB, Potter JF. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2002;72(4):467–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Saeed NP, Panerai RB, Horsfield MA, Robinson TG. Does stroke subtype and measurement technique influence estimation of cerebral autoregulation in acute ischaemic stroke? Cerebrovasc Dis. 2013;35(3):257–61.

    Article  PubMed  CAS  Google Scholar 

  42. Novak V, Yang AC, Lepicovsky L, Goldberger AL, Lipsitz LA, Peng CK. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomed Eng Online. 2004;3(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • Castro P, Serrador JM, Rocha I, Sorond F, Azevedo E. Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcome. Front Neurol. 2017;8:113. First study to assess CA in ischemic stroke within very early time frame (< 6 h) confirming its importance to outcome.

    PubMed  PubMed Central  Google Scholar 

  44. Guo ZN, Liu J, Xing Y, Yan S, Lv C, Jin H, et al. Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke. PLoS One. 2014;9(3):e93213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xiong L, Tian G, Lin W, Wang W, Wang L, Leung T, et al. Is dynamic cerebral autoregulation bilaterally impaired after unilateral acute ischemic stroke? J Stroke Cerebrovasc Dis. 2017;26(5):1081–7.

    Article  PubMed  Google Scholar 

  46. Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, et al. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab. 2014;34(2):228–34.

    Article  PubMed  Google Scholar 

  47. MacGregor DG, Carswell HV, Graham DI, McCulloch J, Macrae IM. Impaired cerebral autoregulation 24 h after induction of transient unilateral focal ischaemia in the rat. Eur J Neurosci. 2000;12(1):58–66.

    Article  PubMed  CAS  Google Scholar 

  48. Dohmen C, Bosche B, Graf R, Reithmeier T, Ernestus RI, Brinker G, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56–61.

    Article  PubMed  Google Scholar 

  49. Reinhard M, Rutsch S, Lambeck J, Wihler C, Czosnyka M, Weiller C, et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol Scand. 2012;125(3):156–62.

    Article  PubMed  CAS  Google Scholar 

  50. White RP, Markus HS. Impaired dynamic cerebral autoregulation in carotid artery stenosis. Stroke. 1997;28(7):1340–4.

    Article  PubMed  CAS  Google Scholar 

  51. Marshall RS, Pavol MA, Cheung YK, et al. Dissociation among hemodynamic measures in asymptomatic high grade carotid artery stenosis. J Neurol Sci. 2016;367:143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Panerai RB, White RP, Markus HS, Evans DH. Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure. Stroke. 1998;29(11):2341–6.

    Article  PubMed  CAS  Google Scholar 

  53. Gooskens I, Schmidt EA, Czosnyka M, et al. Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. Acta Neurochir (Wien). 2003;145(7):527–32. discussion 532

    Article  CAS  Google Scholar 

  54. Minhas PS, Smielewski P, Kirkpatrick PJ, Pickard JD, Czosnyka M. Pressure autoregulation and positron emission tomography-derived cerebral blood flow acetazolamide reactivity in patients with carotid artery stenosis. Neurosurgery. 2004;55(1):63–67; discussion 67-68.

    Article  PubMed  Google Scholar 

  55. Reinhard M, Roth M, Muller T, Czosnyka M, Timmer J, Hetzel A. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke. 2003;34(9):2138–44.

    Article  PubMed  CAS  Google Scholar 

  56. Reinhard M, Muller T, Guschlbauer B, Timmer J, Hetzel A. Dynamic cerebral autoregulation and collateral flow patterns in patients with severe carotid stenosis or occlusion. Ultrasound Med Biol. 2003;29(8):1105–13.

    Article  PubMed  CAS  Google Scholar 

  57. Haubrich C, Klemm A, Diehl RR, Moller-Hartmann W, Klotzsch C. M-wave analysis and passive tilt in patients with different degrees of carotid artery disease. Acta Neurol Scand. 2004;109(3):210–6.

    Article  PubMed  CAS  Google Scholar 

  58. Tang SC, Huang YW, Shieh JS, Huang SJ, Yip PK, Jeng JS. Dynamic cerebral autoregulation in carotid stenosis before and after carotid stenting. J Vasc Surg. 2008;48(1):88–92.

    Article  PubMed  Google Scholar 

  59. Reinhard M, Roth M, Muller T, Guschlbauer B, Timmer J, Czosnyka M, et al. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation. Stroke. 2004;35(6):1381–7.

    Article  PubMed  CAS  Google Scholar 

  60. Mense L, Reimann M, Rudiger H, et al. Autonomic function and cerebral autoregulation in patients undergoing carotid endarterectomy. Circ J. 2010;74(10):2139–45.

    Article  PubMed  Google Scholar 

  61. Semenyutin VB, Asaturyan GA, Nikiforova AA, Aliev VA, Panuntsev GK, Iblyaminov VB, et al. Predictive value of dynamic cerebral autoregulation assessment in surgical management of patients with high-grade carotid artery stenosis. Front Physiol. 2017;8:872.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Guo ZN, Xing Y, Ma H, Jin H, Liu J, et al. Dynamic cerebral autoregulation in asymptomatic patients with unilateral middle cerebral artery stenosis. Medicine. 2015;94(52):e2234.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gong XP, Li Y, Jiang WJ, Wang Y. Impaired dynamic cerebral autoregulation in middle cerebral artery stenosis. Neurol Res. 2006;28(1):76–81.

    Article  PubMed  Google Scholar 

  64. Oldag A, Neumann J, Goertler M, et al. Near-infrared spectroscopy and transcranial sonography to evaluate cerebral autoregulation in middle cerebral artery steno-occlusive disease. 2016;263(11):2296–301.

  65. Reinhard M, Gerds TA, Grabiak D, Zimmermann PR, Roth M, Guschlbauer B, et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease. J Neurol. 2008;255(8):1182–9.

    Article  PubMed  Google Scholar 

  66. Powers WJ, Zazulia AR, Videen TO, et al: Autoregulation of cerebral blood flow surrounding acute (6 to 22 hours) intracerebral hemorrhage. Neurology 2001, 57(1):18, 24.

  67. Kuwata N, Kuroda K, Funayama M, Sato N, Kubo N, Ogawa A. Dysautoregulation in patients with hypertensive intracerebral hemorrhage. A SPECT study. Neurosurg Rev. 1995;18(4):237–45.

    Article  PubMed  CAS  Google Scholar 

  68. Gould B, McCourt R, Asdaghi N, Dowlatshahi D, Jeerakathil T, Kate M, et al. Autoregulation of cerebral blood flow is preserved in primary intracerebral hemorrhage. Stroke. 2013;44(6):1726–8.

    Article  PubMed  CAS  Google Scholar 

  69. Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40(3):815–9.

    Article  PubMed  Google Scholar 

  70. Nakagawa K, Serrador JM, Larose SL, Moslehi F, Lipsitz LA, Sorond FA. Autoregulation in the posterior circulation is altered by the metabolic state of the visual cortex. Stroke. 2009;40(6):2062–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Oeinck M, Neunhoeffer F, Buttler KJ, Meckel S, Schmidt B, Czosnyka M, et al. Dynamic cerebral autoregulation in acute intracerebral hemorrhage. Stroke. 2013;44(10):2722–8.

    Article  PubMed  Google Scholar 

  72. Stuer C, Ikeda T, Stoffel M, Schaller C, Meyer B. Dynamic autoregulation testing does not indicate changes of cerebral blood flow before and after resection of small- and medium-sized cerebral AVM. Transl Stroke Res. 2011;2(1):60–6.

    Article  PubMed  Google Scholar 

  73. • Ma H, Guo ZN, Liu J, Xing Y, Zhao R, Yang Y. Temporal course of dynamic cerebral autoregulation in patients with intracerebral hemorrhage. Stroke. 2016;47(3):674–81. Largest study in IPH relating CA with clinical severity.

    Article  PubMed  CAS  Google Scholar 

  74. Ma H, Guo ZN, Sun X, Liu J, Lv S, Zhao L, et al. Hematoma volume is a predictive factor of disturbed autoregulation after spontaneous intracerebral hemorrhage. J Neurol Sci. 2017;382:96–100.

    Article  PubMed  Google Scholar 

  75. • Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Critical Care. 2014;18(2):R51. Study showing that optimal CCP could guide hemodynamic management of patients with IPH to achieve better outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Takeuchi H, Handa Y, Kobayashi H, Kawano H, Hayashi M. Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Neurosurgery. 1991;28(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  77. Rasmussen G, Hauerberg J, Waldemar G, Gjerris F, Juhler M. Cerebral blood flow autoregulation in experimental subarachnoid haemorrhage in rat. Acta Neurochir. 1992;119(1–4):128–33.

    Article  PubMed  CAS  Google Scholar 

  78. Manno EM, Gress DR, Schwamm LH, Diringer MN, Ogilvy CS. Effects of induced hypertension on transcranial Doppler ultrasound velocities in patients after subarachnoid hemorrhage. Stroke. 1998;29(2):422–8.

    Article  PubMed  CAS  Google Scholar 

  79. Rasmussen G, Bergholdt B, Dalh B, Sunde N, Cold G, Voldby B. Effect of nimodipine on cerebral blood flow and cerebrovascular reactivity after subarachnoid haemorrhage. Acta Neurol Scand. 1999;99(3):182–6.

    Article  PubMed  CAS  Google Scholar 

  80. Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000;47(4):819–25. discussions 825–816.

    Article  PubMed  CAS  Google Scholar 

  81. Schmieder K, Moller F, Engelhardt M, et al. Dynamic cerebral autoregulation in patients with ruptured and unruptured aneurysms after induction of general anesthesia. Zentralblatt fur Neurochirurgie. 2006;67(2):81–7.

    Article  PubMed  CAS  Google Scholar 

  82. Ratsep T, Eelmae J, Asser T. Routine utilization of the transient hyperaemic response test after aneurysmal subarachnoid haemorrhage. Acta Neurochir Suppl. 2002;81:121–4.

    PubMed  CAS  Google Scholar 

  83. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98(4):1133–9. table of contents.

    Article  PubMed  Google Scholar 

  84. Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med. 2001;29(1):158–63.

    Article  PubMed  CAS  Google Scholar 

  85. Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke. 2010;41(9):1963–8.

    Article  PubMed  Google Scholar 

  86. • Budohoski KP, Czosnyka M, Kirkpatrick PJ, et al. Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit Care. 2015;22(1):65–73. Large data set showing the importance of CA for predicting DCI

    Article  PubMed  Google Scholar 

  87. Calviere L, Nasr N, Arnaud C, Czosnyka M, Viguier A, Tissot B, et al. Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment. Neurocrit Care. 2015;23(2):253–8.

    Article  PubMed  Google Scholar 

  88. Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33(3):449–56.

    Article  PubMed  Google Scholar 

  89. Fontana J, Moratin J, Ehrlich G, Scharf J, Weiß C, Schmieder K, et al. Dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage and its relation to angiographic vasospasm and clinical outcome. Neurocrit Care. 2015;23(3):355–63.

    Article  PubMed  Google Scholar 

  90. Fontana J, Wenz H, Schmieder K, Barth M. Impairment of dynamic pressure autoregulation precedes clinical deterioration after aneurysmal subarachnoid hemorrhage. J Neuroimaging. 2016;26(3):339–45.

    Article  PubMed  Google Scholar 

  91. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43(12):3230–7.

    Article  PubMed  Google Scholar 

  92. • Otite F, Mink S, Tan CO, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677–82. This study shows that CA impairment is an early finding in SAH patients that will develop vasospasm and DCI

    Article  PubMed  PubMed Central  Google Scholar 

  93. • Santos GA, Petersen N, Zamani AA, et al. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86(21):1950–6. This study shows that SAH patients that develop with vasospasm and DCI have different pathophislogical deragements that could be depicted by the new method of PPR. An algorithm is proposed to predict these complications.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36(8):1627–32.

    Article  PubMed  CAS  Google Scholar 

  95. Guo ZN, Xing Y, Wang S, Ma H, Liu J, Yang Y. Characteristics of dynamic cerebral autoregulation in cerebral small vessel disease: diffuse and sustained. Sci Rep. 2015;5:15269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.

    Article  PubMed  Google Scholar 

  97. Fontana J, Wenz H, Schmieder K, Barth M. Impairment of dynamic pressure autoregulation precedes clinical deterioration after aneurysmal subarachnoid hemorrhage. J Neuroimaging. 2015;

  98. Hockel K, Diedler J, Steiner J, Birkenhauer U, Ernemann U, Schuhmann MU. Effect of intra-arterial and intravenous nimodipine therapy of cerebral vasospasm after subarachnoid hemorrhage on cerebrovascular reactivity and oxygenation. World neurosurgery. 2017;101:372–8.

    Article  PubMed  Google Scholar 

  99. Bijlenga P, Czosnyka M, Budohoski KP, Soehle M, Pickard JD, Kirkpatrick PJ, et al. “Optimal cerebral perfusion pressure” in poor grade patients after subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):17–23.

    Article  PubMed  Google Scholar 

  100. Tikhonoff V, Zhang H, Richart T, Staessen JA. Blood pressure as a prognostic factor after acute stroke. Lancet Neurol. 2009;8(10):938–48.

    Article  PubMed  CAS  Google Scholar 

  101. Jauch EC, Saver JL, Adams HP Jr, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

    Article  PubMed  Google Scholar 

  102. Hemphill JC, Greenberg SM, Anderson CS, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  103. Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  104. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, Moy CS, Silbergleit R, Steiner T, Suarez JI, Toyoda K, Wang Y, Yamamoto H, Yoon BW, ATACH-2 Trial Investigators and the Neurological Emergency Treatment Trials Network.: Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016, 375(11):1033–1043.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Sorond.

Ethics declarations

Conflict of Interest

Pedro Castro, Elsa Azevedo, and Farzaneh Sorond declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, P., Azevedo, E. & Sorond, F. Cerebral Autoregulation in Stroke. Curr Atheroscler Rep 20, 37 (2018). https://doi.org/10.1007/s11883-018-0739-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0739-5

Keywords

Navigation