Skip to main content
Log in

Lupine (Lupinus spp.) proteins: characteristics, safety and food applications

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Lupines (Lupinus spp.) have emerged as a cheap functional food with the advantages of being non-genetically modified crop, able to adapt to harsh conditions and low-input farming. Lupines are rich in protein and poor in starch, similar to soy. The factor limiting the use of lupine is the presence of quinolizidine alkaloids especially in bitter species. Nevertheless, modern breeding programs ensured the selection of sweet lupine species with reduced alkaloid content (≤ 0.2 g/kg DM). Numerous techniques have been employed to produce lupine protein isolates, concentrates and hydrolysates. These proteins are rich in bioactive peptides associated with health-related benefits and have been reported with interesting techno-functional properties. Lupine Protein isolates and concentrates are used mostly for developing healthy foods, while hydrolysates are more applied in nutraceutical and cosmetic industries. Further research is needed to ensure better safety and wider spectrum of application through adequate strategies for allergenicity mitigation and improving techno-functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Direction générale de la santé (1998) Conseil supérieur d’hygiène publique de France (section de l’alimentation et de la nutrition) relatif à l’emploi de farine de lupin en alimentation humaine (Avis du 17 mars 1998).

  2. Advisory Committee on Novel Food and Processes (1996) ACNFP report on seeds from the narrow leaved lupin (Lupinus angustifolius). Append IX Minist Agric Fish Food Dep Heal 107–123

  3. Romeo FV, Fabroni S, Ballistreri G et al (2018) Characterization and antimicrobial activity of alkaloid extracts from seeds of different genotypes of Lupinus spp. Sustainability. https://doi.org/10.3390/su10030788

    Article  Google Scholar 

  4. Yánez-Mendizábal V, Falconí CE (2018) Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production. Biol Control 122:67–75. https://doi.org/10.1016/j.biocontrol.2018.04.004

    Article  CAS  Google Scholar 

  5. Carvajal-Larenas FE, Nout MJR, van Boekel MAJS et al (2013) Modelling of the aqueous debittering process of Lupinus mutabilis Sweet. LWT Food Sci Technol 53:507–516. https://doi.org/10.1016/j.lwt.2013.03.017

    Article  CAS  Google Scholar 

  6. Villacrés E, Álvarez J, Rosell C (2020) Effects of two debittering processes on the alkaloid content and quality characteristics of lupin (Lupinus mutabilis Sweet). J Sci Food Agric 100:2166–2175. https://doi.org/10.1002/jsfa.10240

    Article  CAS  PubMed  Google Scholar 

  7. Gulisano A, Alves S, Martins JN, Trindade LM (2019) Genetics and breeding of Lupinus mutabilis: an emerging protein crop. Front Plant Sci 10:1385. https://doi.org/10.3389/fpls.2019.01385

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgos-Díaz C, Piornos JA, Wandersleben T et al (2016) Emulsifying and foaming properties of different protein fractions obtained from a novel lupin variety AluProt-CGNA(®) (Lupinus luteus). J Food Sci 81:C1699–C1706. https://doi.org/10.1111/1750-3841.13350

    Article  CAS  PubMed  Google Scholar 

  9. Paraskevopoulou A, Provatidou E, Tsotsiou D, Kiosseoglou V (2010) Dough rheology and baking performance of wheat flour–lupin protein isolate blends. Food Res Int 43:1009–1016. https://doi.org/10.1016/J.FOODRES.2010.01.010

    Article  CAS  Google Scholar 

  10. Vogelsang-O’Dwyer M, Bez J, Petersen IL et al (2020) Techno-functional, nutritional and environmental performance of protein isolates from blue lupin and white lupin. Foods 9:230. https://doi.org/10.3390/foods9020230

    Article  CAS  PubMed Central  Google Scholar 

  11. Córdova-Ramos JS, Glorio-Paulet P, Camarena F et al (2020) Andean lupin (Lupinus mutabilis Sweet): processing effects on chemical composition, heat damage, and in vitro protein digestibility. Cereal Chem 97:827–835. https://doi.org/10.1002/cche.10303

    Article  CAS  Google Scholar 

  12. Berghout JAM, Marmolejo-Garcia C, Berton-Carabin CC et al (2015) Aqueous fractionation yields chemically stable lupin protein isolates. Food Res Int 72:82–90. https://doi.org/10.1016/j.foodres.2015.03.039

    Article  CAS  Google Scholar 

  13. FoodInnovation (2020) Lupin Protein Market—Global Industry Analysis 2015–2019 and Opportunity Assessment 2020–2030. https://www.persistencemarketresearch.com/market-research/lupin-protein-market.asp. Accessed 3 Aug 2020

  14. Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS et al (2012) Yellow lupin (Lupinus luteus L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics. https://doi.org/10.1186/1471-2164-13-425

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pelgrom PJM, Wang J, Boom RM, Schutyser MAI (2015) Pre- and post-treatment enhance the protein enrichment from milling and air classification of legumes. J Food Eng 155:53–61. https://doi.org/10.1016/j.jfoodeng.2015.01.005

    Article  CAS  Google Scholar 

  16. Bähr M, Fechner A, Hasenkopf K et al (2014) Chemical composition of dehulled seeds of selected lupin cultivars in comparison to pea and soya bean. LWT Food Sci Technol 59:587–590. https://doi.org/10.1016/j.lwt.2014.05.026

    Article  CAS  Google Scholar 

  17. Arnoldi A, Boschin G, Zanoni C, Lammi C (2015) The health benefits of sweet lupin seed flours and isolated proteins. J Funct Foods 18:550–563

    Article  CAS  Google Scholar 

  18. FAO (2017) FAO/INFOODS databases FAO/INFOODS global database for pulses on dry matter basis. Version 1.0-PulsesDM1.0 user guide

  19. Cortés-Avendaño P, Tarvainen M, Suomela JP et al (2020) Profile and content of residual alkaloids in ten ecotypes of Lupinus mutabilis sweet after aqueous debittering process. Plant Foods Hum Nutr 75:184–191. https://doi.org/10.1007/s11130-020-00799-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sironi E, Sessa F, Duranti M (2005) A simple procedure of lupin seed protein fractionation for selective food applications. Eur Food Res Technol 221:145–150. https://doi.org/10.1007/s00217-005-1151-2

    Article  CAS  Google Scholar 

  21. Villarino CBJ, Jayasena V, Coorey R et al (2016) Nutritional, health, and technological functionality of lupin flour addition to bread and other baked products: benefits and challenges. Crit Rev Food Sci Nutr 56:835–857. https://doi.org/10.1080/10408398.2013.814044

    Article  CAS  PubMed  Google Scholar 

  22. Bader S, Bez J, Eisner P (2011) Can protein functionalities be enhanced by high-pressure homogenization?—A study on functional properties of lupin proteins. Procedia Food Sci 1:1359–1366. https://doi.org/10.1016/j.profoo.2011.09.201

    Article  CAS  Google Scholar 

  23. Piornos JA, Burgos-Díaz C, Ogura T et al (2015) Functional and physicochemical properties of a protein isolate from AluProt-CGNA: a novel protein-rich lupin variety (Lupinus luteus). Food Res Int 76:719–724. https://doi.org/10.1016/j.foodres.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  24. MarketWatch (2020) Lupin Protein Market 2020 size, share industry trends, global competitors strategy, segments, regional analysis, review, key players profile, statistics and growth to 2026 analysis—MarketWatch. https://www.marketwatch.com/press-release/lupin-protein-market-2020-sizeshare-industry-trends-global-competitors-strategy-segments-regional-analysis-review-key-players-profile-statistics-and-growth-to-2026-analysis-2020-07-22. Accessed 3 Aug 2020

  25. Aguilar-Acosta LA, Serna-Saldivar SO, Rodríguez-Rodríguez J et al (2020) Effect of ultrasound application on protein yield and fate of alkaloids during lupin alkaline extraction process. Biomolecules. https://doi.org/10.3390/biom10020292

    Article  PubMed  PubMed Central  Google Scholar 

  26. Erbas M (2010) The effects of different debittering methods on the production of lupin bean snack from bitter Lupinus albus L. seeds. J Food Qual 33:742–757. https://doi.org/10.1111/j.1745-4557.2010.00347.x

    Article  CAS  Google Scholar 

  27. Carvajal-Larenas FE, Van Boekel MJAS, Koziol M et al (2014) Effect of processing on the diffusion of alkaloids and quality of Lupinus mutabilis sweet. J Food Process Preserv 38:1461–1471. https://doi.org/10.1111/jfpp.12105

    Article  CAS  Google Scholar 

  28. Hanania M, Radwan S, Odeh SA, Qumber A (2019) Determination of minerals, total phenolic content, flavonoids, antioxidants and antimicrobial activities of ethanolic extract of sweet Lupinus angustifolius of palestine. Eur J Med Plants 28:1–6. https://doi.org/10.9734/ejmp/2019/v28i130126

    Article  Google Scholar 

  29. Villacrés E, Quelal MB, Jácome X et al (2020) Effect of debittering and solid-state fermentation processes on the nutritional content of lupine (Lupinus mutabilis Sweet). Int J Food Sci Technol IJFS. https://doi.org/10.1111/ijfs.14512

    Article  Google Scholar 

  30. Villacrés E, Allauca V, Peralta E, Insuasti G, Álvarez MQ (2015) Germination, an effective process to increase the nutritional value and reduce non-nutritive factors of lupine grain (Lupinus mutabilis Sweet). Int J Food Sci Nutr Eng 5:163–168. https://doi.org/10.5923/j.food.20150504.01

    Article  Google Scholar 

  31. Khan MK, Karnpanit W, Nasar-Abbas SM et al (2018) Development of a fermented product with higher phenolic compounds and lower anti-nutritional factors from germinated lupin (Lupinus angustifolius L.). J Food Process Preserv. https://doi.org/10.1111/jfpp.13843

    Article  Google Scholar 

  32. Karnpanit W, Coorey R, Clements J et al (2016) Effect of cultivar, cultivation year and dehulling on raffinose family oligosaccharides in Australian sweet lupin (Lupinus angustifolius L.). Int J Food Sci Technol 51:1386–1392. https://doi.org/10.1111/ijfs.13094

    Article  CAS  Google Scholar 

  33. Mohammed MA, Mohamed EA, Yagoub AEA et al (2017) Effect of processing methods on alkaloids, phytate, phenolics, antioxidants activity and minerals of newly developed lupin (Lupinus albus L.) cultivar. J Food Process Preserv 41:e12960. https://doi.org/10.1111/jfpp.12960

    Article  CAS  Google Scholar 

  34. Arnoldi A, Sirtori C, Waesche A (2004) WO2006003110A1—process for the purification of protein fractions from lupin seeds, active on lipid metabolism. Google Patents

  35. Wäsche A, Müller K, Knauf U (2001) New processing of lupin protein isolates and functional properties. Food Nahrung 45:393–395. https://doi.org/10.1002/1521-3803(20011001)45:6%3c393::AID-FOOD393%3e3.0.CO;2-O

    Article  PubMed  Google Scholar 

  36. Wang J, Zhao J, De Wit M et al (2016) Lupine protein enrichment by milling and electrostatic separation. Innov Food Sci Emerg Technol 33:596–602. https://doi.org/10.1016/j.ifset.2015.12.020

    Article  CAS  Google Scholar 

  37. Boschin G, Scigliuolo GM, Resta D, Arnoldi A (2014) Optimization of the enzymatic hydrolysis of lupin (Lupinus) proteins for producing ACE-inhibitory peptides. J Agric Food Chem 62:1846–1851. https://doi.org/10.1021/jf4039056

    Article  CAS  PubMed  Google Scholar 

  38. Schlegel K, Sontheimer K, Hickisch A et al (2019) Enzymatic hydrolysis of lupin protein isolates—changes in the molecular weight distribution, technofunctional characteristics, and sensory attributes. Food Sci Nutr 7(fsn3):1139. https://doi.org/10.1002/fsn3.1139

    Article  CAS  Google Scholar 

  39. Boschin G, Scigliuolo GM, Resta D, Arnoldi A (2014) ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem 145:34–40. https://doi.org/10.1016/j.foodchem.2013.07.076

    Article  CAS  PubMed  Google Scholar 

  40. Duranti M, Consonni A, Magni C et al (2008) The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Technol 19:624–633

    Article  CAS  Google Scholar 

  41. Ogura T, Ogihara J, Sunairi M et al (2014) Proteomic characterization of seeds from yellow lupin (Lupinus luteus L.). Proteomics 14:1543–1546. https://doi.org/10.1002/pmic.201300511

    Article  CAS  PubMed  Google Scholar 

  42. Duranti M, Restani P, Poniatowska M, Cerletti P (1981) The seed globulins of Lupinus albus. Phytochemistry 20:2071–2075. https://doi.org/10.1016/0031-9422(81)80087-8

    Article  CAS  Google Scholar 

  43. FAO, WHO (1981) Energy and protein requirements (Report of FAO Nutritional Meeting Series No 52). FAO, Rome

    Google Scholar 

  44. de J Sandoval-Muñíz R, Vargas-Guerrero B, Guzmán TJ et al (2018) Lupin gamma conglutin protein: effect on Slc2a2, Gck and Pdx-1 gene expression and GLUT2 levels in diabetic rats. Braz J Pharmacogn 28:716–723. https://doi.org/10.1016/j.bjp.2018.08.002

    Article  CAS  Google Scholar 

  45. Lammi C, Zanoni C, Arnoldi A, Vistoli G (2016) Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors. in vitro biochemical screening and in silico molecular modeling study. J Agric Food Chem 64:9601–9606. https://doi.org/10.1021/acs.jafc.6b04041

    Article  CAS  PubMed  Google Scholar 

  46. Wiedemann M, Gurrola-Díaz CM, Vargas-Guerrero B et al (2015) Lupanine improves glucose homeostasis by influencing KATP channels and insulin gene expression. Molecules 20:19085–19100. https://doi.org/10.3390/molecules201019085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. González-Santiago AE, Vargas-Guerrero B, García-López PM et al (2017) Lupinus albus conglutin gamma modifies the gene expressions of enzymes involved in glucose hepatic production in vivo. Plant Foods Hum Nutr 72:134–140. https://doi.org/10.1007/s11130-016-0597-7

    Article  CAS  PubMed  Google Scholar 

  48. Muñoz EB, Luna-Vital DA, Fornasini M et al (2018) Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet) enhanced glucose uptake and reduced gluconeogenesis in vitro. J Funct Foods 45:339–347. https://doi.org/10.1016/j.jff.2018.04.021

    Article  CAS  Google Scholar 

  49. Magni C, Sessa F, Accardo E et al (2004) Conglutin γ, a lupin seed protein, binds insulin in vitro and reduces plasma glucose levels of hyperglycemic rats. J Nutr Biochem 15:646–650

    Article  CAS  Google Scholar 

  50. Lima-Cabello E, Alche V, Foley RC et al (2017) Narrow-leafed lupin (Lupinus angustifolius L.) β-conglutin proteins modulate the insulin signaling pathway as potential type 2 diabetes treatment and inflammatory-related disease amelioration. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600819

    Article  PubMed  Google Scholar 

  51. Tapadia M, Carlessi R, Johnson S et al (2019) Lupin seed hydrolysate promotes G-protein-coupled receptor, intracellular Ca2+ and enhanced glycolytic metabolism-mediated insulin secretion from BRIN-BD11 pancreatic beta cells. Mol Cell Endocrinol 480:83–96. https://doi.org/10.1016/j.mce.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  52. Pereira FC, Ouedraogo R, Lebrun P et al (2001) Insulinotropic action of white lupine seeds (Lupinus albus L.): effects of ion fluxes and insulin secretion from isolated pancreatic islets. Biomed Res 22:103–109. https://doi.org/10.2220/biomedres.22.103

    Article  CAS  Google Scholar 

  53. Ward NC, Mori TA, Beilin LJ et al (2020) The effect of regular consumption of lupin-containing foods on glycaemic control and blood pressure in people with type 2 diabetes mellitus. Food and function. Royal Society of Chemistry, pp 741–747

    Google Scholar 

  54. Pavanello C, Lammi C, Ruscica M et al (2017) Effects of a lupin protein concentrate on lipids, blood pressure and insulin resistance in moderately dyslipidaemic patients: a randomised controlled trial. J Funct Foods 37:8–15. https://doi.org/10.1016/j.jff.2017.07.039

    Article  CAS  Google Scholar 

  55. Lammi C, Zanoni C, Scigliuolo GM et al (2014) Lupin peptides lower low-density lipoprotein (LDL) cholesterol through an up-regulation of the LDL receptor/sterol regulatory element binding protein 2 (SREBP2) pathway at HepG2 cell line. J Agric Food Chem 62:7151–7159. https://doi.org/10.1021/jf500795b

    Article  CAS  PubMed  Google Scholar 

  56. Sirtori CR, Lovati MR, Manzoni C et al (2004) Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 134:18–23. https://doi.org/10.1093/jn/134.1.18

    Article  CAS  PubMed  Google Scholar 

  57. Bähr M, Fechner A, Krämer J et al (2013) Lupin protein positively affects plasma LDL cholesterol and LDL:HDL cholesterol ratio in hypercholesterolemic adults after four weeks of supplementation: a randomized, controlled crossover study. Nutr J 12:107. https://doi.org/10.1186/1475-2891-12-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lammi C, Zanoni C, Arnoldi A, Aiello G (2019) Erratum to: YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. J Food Biochem 43(3):e12524. https://doi.org/10.1111/JFBC.12524

    Article  Google Scholar 

  59. Lammi C, Zanoni C, Ferruzza S et al (2016) Hypocholesterolaemic activity of lupin peptides: investigation on the crosstalk between human enterocytes and hepatocytes using a co-culture system including Caco-2 and HepG2 cells. Nutrients 8:437. https://doi.org/10.3390/nu8070437

    Article  CAS  PubMed Central  Google Scholar 

  60. Guo X, Shang W, Strappe P et al (2018) Peptides derived from lupin proteins confer potent protection against oxidative stress. J Sci Food Agric 98:5225–5234. https://doi.org/10.1002/jsfa.9059

    Article  CAS  PubMed  Google Scholar 

  61. Cruz-Chamorro I, Álvarez-Sánchez N, del C Millán-Linares M et al (2019) Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108585

    Article  PubMed  Google Scholar 

  62. Intiquilla A, Jiménez-Aliaga K, Zavaleta AI, Hernández-Ledesma B (2018) Production of antioxidant hydrolyzates from a Lupinus mutabilis (Tarwi) protein concentrate with alcalase: optimization by response surface methodology. Nat Prod Commun 13:751–756. https://doi.org/10.1177/1934578x1801300626

    Article  CAS  Google Scholar 

  63. Lammi C, Aiello G, Vistoli G et al (2016) A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. J Funct Foods 24:297–306. https://doi.org/10.1016/j.jff.2016.04.017

    Article  CAS  Google Scholar 

  64. del C Millán-Linares M, Millán F, Pedroche J, del M Yust M (2015) GPETAFLR: a new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. J Funct Foods 18:358–367. https://doi.org/10.1016/j.jff.2015.07.016

    Article  CAS  Google Scholar 

  65. Guillamón E, Rodríguez J, Burbano C et al (2010) Characterization of lupin major allergens (Lupinus albus L.). Mol Nutr Food Res 54:1668–1676. https://doi.org/10.1002/mnfr.200900452

    Article  CAS  PubMed  Google Scholar 

  66. Lima-Cabello E, Alché JD, Jimenez-Lopez JC (2019) Narrow-leafed lupin main allergen β-conglutin (lup an 1) detection and quantification assessment in natural and processed foods. Foods. https://doi.org/10.3390/foods8100513

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ballabio C, Peñas E, Uberti F et al (2013) Characterization of the sensitization profile to lupin in peanut-allergic children and assessment of cross-reactivity risk. Pediatr Allergy Immunol 24:270–275. https://doi.org/10.1111/pai.12054

    Article  PubMed  Google Scholar 

  68. Hefle L, Bush, (1994) Adverse reaction to lupine-fortified pasta. J Allergy Clin Immunol 94:167–172. https://doi.org/10.1053/ai.1994.v94.a54942

    Article  CAS  PubMed  Google Scholar 

  69. European Food Safety Authority (2004) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the Commission relating to 2004), the evaluation of allergenic foods for labelling purposes

  70. European Parliament and of the Council (2000) Directive 2000/13/EC of the European Parliament and of the Council of 20 March 2000 on the approximation of the laws of the Member States relating to the labelling, presentation and advertising of foodstuffs. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32000L0013. Accessed 21 Aug 2020

  71. European Parliament and of the Council (2011) Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169. Accessed 21 Aug 2020

  72. Holden L, Sletten GBG, Lindvik H et al (2008) Characterization of IgE binding to lupin, peanut and almond with sera from lupin-allergic patients. Int Arch Allergy Immunol 146:267–276. https://doi.org/10.1159/000121461

    Article  CAS  PubMed  Google Scholar 

  73. Goggin DE, Mir G, Smith WB et al (2008) Proteomic analysis of lupin seed proteins to identify conglutin β as an allergen, Lup an 1. J Agric Food Chem 56:6370–6377. https://doi.org/10.1021/jf800840u

    Article  CAS  PubMed  Google Scholar 

  74. Dooper MMBW, Holden L, Fæste CK et al (2007) Monoclonal antibodies against the candidate lupin allergens α-conglutin and β-conglutin. Int Arch Allergy Immunol 143:49–58. https://doi.org/10.1159/000098224

    Article  CAS  PubMed  Google Scholar 

  75. Sanz ML, De Las Marinas MD, Fernández J, Gamboa PM (2010) Lupin allergy: a hidden killer in the home. Clin Exp Allergy 40:1461–1466

    Article  CAS  Google Scholar 

  76. Shaw J, Roberts G, Grimshaw K et al (2008) Lupin allergy in peanut-allergic children and teenagers. Allergy Eur J Allergy Clin Immunol 63:370–373. https://doi.org/10.1111/j.1398-9995.2007.01568.x

    Article  CAS  Google Scholar 

  77. Pinto SESDC, Neves VA, De Medeiros BMM (2009) Enzymatic hydrolysis of sweet lupin, chickpea, and lentil 11S globulins decreases their antigenic activity. J Agric Food Chem 57:1070–1075. https://doi.org/10.1021/jf803108c

    Article  CAS  Google Scholar 

  78. Álvarez-Álvarez J, Guillamón E, Crespo JF et al (2005) Effects of extrusion, boiling, autoclaving, and microwave heating on lupine allergenicity. J Agric Food Chem 53:1294–1298. https://doi.org/10.1021/jf0490145

    Article  CAS  PubMed  Google Scholar 

  79. Sirtori E, Resta D, Brambilla F et al (2010) The effects of various processing conditions on a protein isolate from Lupinus angustifolius. Food Chem 120:496–504. https://doi.org/10.1016/j.foodchem.2009.10.043

    Article  CAS  Google Scholar 

  80. Bader S, Oviedo JP, Pickardt C, Eisner P (2011) Influence of different organic solvents on the functional and sensory properties of lupin (Lupinus angustifolius L.) proteins. LWT Food Sci Technol 44:1396–1404. https://doi.org/10.1016/j.lwt.2011.01.007

    Article  CAS  Google Scholar 

  81. Chew PG, Casey AJ, Johnson SK (2003) Protein quality and physico-functionality of Australian sweet lupin (Lupinus angustifolius cv. Gungurru) protein concentrates prepared by isoelectric precipitation or ultrafiltration. Food Chem 83:575–583. https://doi.org/10.1016/S0308-8146(03)00156-0

    Article  CAS  Google Scholar 

  82. Berghout JAM, Boom RM, van der Goot AJ (2015) Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocoll 43:465–472. https://doi.org/10.1016/j.foodhyd.2014.07.003

    Article  CAS  Google Scholar 

  83. Batista AP, Portugal CAM, Sousa I et al (2005) Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques. Int J Biol Macromol 36:135–143. https://doi.org/10.1016/j.ijbiomac.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  84. Schlegel K, Sontheimer K, Eisner P, Schweiggert-Weisz U (2019) Effect of enzyme-assisted hydrolysis on protein pattern, technofunctional, and sensory properties of lupin protein isolates using enzyme combinations. Food Sci Nutr. https://doi.org/10.1002/fsn3.1286

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lampart-Szczapa E, Konieczny P, Nogala-Kałucka M et al (2006) Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chem 96:290–296. https://doi.org/10.1016/j.foodchem.2005.02.031

    Article  CAS  Google Scholar 

  86. Berghout JAM, Venema P, Boom RM, Van der Goot AJ (2015) Comparing functional properties of concentrated protein isolates with freeze-dried protein isolates from lupin seeds. Food Hydrocoll 51:346–354. https://doi.org/10.1016/j.foodhyd.2015.05.017

    Article  CAS  Google Scholar 

  87. Wong A, Pitts K, Jayasena V, Johnson S (2013) Isolation and foaming functionality of acid-soluble protein from lupin (Lupinus angustifolius) kernels. J Sci Food Agric 93:3755–3762. https://doi.org/10.1002/jsfa.6249

    Article  CAS  PubMed  Google Scholar 

  88. D’Agostina A, Antonioni C, Resta D et al (2006) Optimization of a pilot-scale process for producing lupin protein isolates with valuable technological properties and minimum thermal damage. J Agric Food Chem 54:92–98. https://doi.org/10.1021/jf0518094

    Article  CAS  PubMed  Google Scholar 

  89. Capraro J, Magni C, Scarafoni A et al (2014) Pasta supplemented with isolated lupin protein fractions reduces body weight gain and food intake of rats and decreases plasma glucose concentration upon glucose overload trial. Food Funct 5:375–380. https://doi.org/10.1039/c3fo60583c

    Article  CAS  PubMed  Google Scholar 

  90. Doxastakis G, Papageorgiou M, Mandalou D et al (2007) Technological properties and non-enzymatic browning of white lupin protein enriched spaghetti. Food Chem 101:57–64. https://doi.org/10.1016/j.foodchem.2005.12.054

    Article  CAS  Google Scholar 

  91. López EP (2014) Influence of the addition of lupine protein isolate on the protein and technological characteristics of dough and fresh bread with added Brea Gum. Food Sci Technol 34:195–203. https://doi.org/10.1590/S0101-20612014005000016

    Article  Google Scholar 

  92. López EP, Goldner MC (2015) Influence of storage time for the acceptability of bread formulated with lupine protein isolate and added brea gum. LWT Food Sci Technol 64:1171–1178. https://doi.org/10.1016/j.lwt.2015.07.013

    Article  CAS  Google Scholar 

  93. Paraskevopoulou A, Chrysanthou A, Koutidou M (2012) Characterisation of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Res Int 48:568–577. https://doi.org/10.1016/J.FOODRES.2012.05.028

    Article  CAS  Google Scholar 

  94. Mota J, Lima A, Ferreira RB, Raymundo A (2020) Lupin seed protein extract can efficiently enrich the physical properties of cookies prepared with alternative flours. Foods 9:1064. https://doi.org/10.3390/foods9081064

    Article  CAS  PubMed Central  Google Scholar 

  95. Drakos A, Doxastakis G, Kiosseoglou V (2007) Functional effects of lupin proteins in comminuted meat and emulsion gels. Food Chem 100:650–655. https://doi.org/10.1016/j.foodchem.2005.09.088

    Article  CAS  Google Scholar 

  96. Alamanou S, Bloukas JG, Paneras ED, Doxastakis G (1996) Influence of protein isolate from lupin seeds (Lupinus albus ssp. Graecus) on processing and quality characteristics of frankfurters. Meat Sci 42:79–93. https://doi.org/10.1016/0309-1740(95)00013-5

    Article  CAS  PubMed  Google Scholar 

  97. Papavergou EJ, Bloukas JG, Doxastakis G (1999) Effect of lupin seed proteins on quality characteristics of fermented sausages. Meat Sci 52:421–427. https://doi.org/10.1016/S0309-1740(99)00025-X

    Article  CAS  PubMed  Google Scholar 

  98. Hickisch A, Beer R, Vogel RF, Toelstede S (2016) Influence of lupin-based milk alternative heat treatment and exopolysaccharide-producing lactic acid bacteria on the physical characteristics of lupin-based yogurt alternatives. Food Res Int 84:180–188. https://doi.org/10.1016/j.foodres.2016.03.037

    Article  CAS  Google Scholar 

  99. Kuznetsova L, Zabodalova L, Baranenko D (2014) On the potential of lupin protein concentrate made by enzymatic hydrolysis of carbohydrates in dairy-like applications. Agron Res 12:727–736

    Google Scholar 

  100. Hickisch A, Bindl K, Vogel RF, Toelstede S (2016) Thermal treatment of lupin-based milk alternatives—impact on lupin proteins and the network of respective lupin-based yogurt alternatives. Food Res Int 89:850–859. https://doi.org/10.1016/j.foodres.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  101. Jiménez-Martínez C, Hernández-Sánchez H, Dávila-Ortiz G (2003) Production of a yogurt-like product from Lupinus campestris seeds. J Sci Food Agric 83:515–522. https://doi.org/10.1002/jsfa.1385

    Article  CAS  Google Scholar 

  102. Snowden J, Sipsas S, John CS (2003) EP1615507A1—an improved method to produce lupin protein-based dairy substitutes. Google Patents

  103. Rui X, Zhang Q, Huang J et al (2019) Does lactic fermentation influence soy yogurt protein digestibility: a comparative study between soymilk and soy yogurt at different pH. J Sci Food Agric 99:861–867. https://doi.org/10.1002/jsfa.9256

    Article  CAS  PubMed  Google Scholar 

  104. Drake MA, Chen XQ, Tamarapu S, Leenanon B (2000) Soy protein fortification affects sensory, chemical, and microbiological properties of dairy yogurts. J Food Sci 65:1244–1247. https://doi.org/10.1111/j.1365-2621.2000.tb10272.x

    Article  CAS  Google Scholar 

  105. ProLupin (2020) Product example MADE WITH LUVE Lupine Ice Cream—Prolupin GmbH. https://www.prolupin.com/made-with-luve-lupine-ice-cream.html. Accessed 3 Aug 2020

  106. Sujak A, Kotlarz A, Strobel W (2006) Compositional and nutritional evaluation of several lupin seeds. Food Chem 98:711–719. https://doi.org/10.1016/j.foodchem.2005.06.036

    Article  CAS  Google Scholar 

  107. Martínez-Villaluenga C, Frías J, Vidal-Valverde C (2006) Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem 98:291–299. https://doi.org/10.1016/j.foodchem.2005.05.074

    Article  CAS  Google Scholar 

  108. Ciftci D, Saldaña MDA (2015) Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresour Technol 194:75–82. https://doi.org/10.1016/j.biortech.2015.06.146

    Article  CAS  PubMed  Google Scholar 

  109. Berghout JAM, Pelgrom PJM, Schutyser MAI et al (2015) Sustainability assessment of oilseed fractionation processes: a case study on lupin seeds. J Food Eng 150:117–124. https://doi.org/10.1016/j.jfoodeng.2014.11.005

    Article  CAS  Google Scholar 

  110. Parmdeep, Sharma S, Singh S (2017) Comparison of cell wall constituents, nutrients and anti-nutrients of lupin genotypes. Legum Res 40:478–484. https://doi.org/10.18805/lr.v0iOF.11048

    Article  Google Scholar 

  111. Carvalho IS, Chaves M, Pinto Ricardo C (2005) Influence of water stress on the chemical composition of seeds of two lupins (Lupinus albus and Lupinus mutabilis). J Agron Crop Sci 191:95–98. https://doi.org/10.1111/j.1439-037X.2004.00128.x

    Article  Google Scholar 

  112. Majeed H (2012) Genetic assessment of the genus Pisum L. based on sequence specific amplification polymorphism data. J Med Plants Res. https://doi.org/10.5897/jmpr11.471

    Article  Google Scholar 

  113. Rempel C, Geng X, Zhang Y (2019) Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chem 276:119–128. https://doi.org/10.1016/j.foodchem.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  114. Martinez M, Stone AK, Yovchev AG et al (2016) Effect of genotype and environment on the surface characteristics and functionality of air-classified faba bean protein concentrates. Eur Food Res Technol 242:1903–1911. https://doi.org/10.1007/s00217-016-2690-4

    Article  CAS  Google Scholar 

  115. Mayer Labba IC, Frøkiær H, Sandberg AS (2021) Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res Int 140:110038. https://doi.org/10.1016/J.FOODRES.2020.110038

    Article  CAS  PubMed  Google Scholar 

  116. He F-J, Chen J-Q (2013) Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: differences between Chinese women and women in Western countries and possible mechanisms. Food Sci Hum Wellness 2:146–161. https://doi.org/10.1016/j.fshw.2013.08.002

    Article  Google Scholar 

  117. Ballester D, Yáñez E, García R et al (1980) Chemical composition, nutritive value, and toxicological evaluation of two species of sweet lupine (Lupinus albus and Lupinus luteus). J Agric Food Chem 28:402–405. https://doi.org/10.1021/jf60228a056

    Article  CAS  PubMed  Google Scholar 

  118. Schumacher H, Paulsen HM, Gau AE et al (2011) Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breed 130:156–164. https://doi.org/10.1111/j.1439-0523.2010.01832.x

    Article  CAS  Google Scholar 

  119. Sarwar G, Peace RW, Botting HG, Brulé D (1989) Relationship between amino acid scores and protein quality indices based on rat growth. Plant Foods Hum Nutr 39:33–44. https://doi.org/10.1007/BF01092399

    Article  CAS  PubMed  Google Scholar 

  120. Eckert E, Han J, Swallow K et al (2019) Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chem 96:725–741. https://doi.org/10.1002/cche.10169

    Article  CAS  Google Scholar 

  121. Singhal A, Stone AK, Vandenberg A et al (2016) Effect of genotype on the physicochemical and functional attributes of faba bean (Vicia faba L.) protein isolates. Food Sci Biotechnol 25:1513–1522. https://doi.org/10.1007/s10068-016-0235-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CERCA Programme (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Boukid.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukid, F., Pasqualone, A. Lupine (Lupinus spp.) proteins: characteristics, safety and food applications. Eur Food Res Technol 248, 345–356 (2022). https://doi.org/10.1007/s00217-021-03909-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03909-5

Keywords

Navigation