Skip to main content

Advertisement

Log in

High-pressure processing before freezing and frozen storage of European hake (Merluccius merluccius): effect on mechanical properties and visual appearance

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

High-pressure processing (HPP) is a non-thermal technique of growing interest for fish preservation. In this work, the effect on physical properties of European hake (Merluccius merluccius) caused by HPP, followed by freezing and frozen storage at −10 °C for 5 months, was evaluated in an accelerated frozen storage study. Following a central composite design, five pressure levels (range 150–450 MPa) and frozen storage time (range 0–5 months) were tested. Colour parameters (L *, a * and b *), expressible water and texture parameters were evaluated on raw and cooked muscles. Results showed that a low-pressure level (150 MPa) allowed adequate expressible water for raw muscle up to 2.5 months of frozen storage time. Values of 150 or 169.27 MPa did not cause significant changes on L * values of raw muscle. Overall, HPP led to changes on texture parameters of fresh muscle before and after cooking. However, 300 MPa and 5 months of frozen storage showed adhesiveness values for raw muscle alike that of non-treated fresh muscle. Moreover, 150–300 MPa for 5 months of frozen storage resulted in cohesiveness and chewiness values for cooked muscle like cooked fresh hake, showing that the HPP improves the quality of frozen hake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen MK, Nielsen HH (2006) Seafood enzymes. In: Hui YH (ed) Food biochem. Food process. Blackwell Publishing, Hoboken, pp 379–400

    Google Scholar 

  2. Chéret R, Chapleau N, Delbarre-Ladrat C et al (2005) Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. J Food Sci 70:e477–e483. doi:10.1111/j.1365-2621.2005.tb11518.x

    Article  Google Scholar 

  3. Ashie INA, Simpson BK (1996) Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Res Int 29:569–575

    Article  CAS  Google Scholar 

  4. Erickson MC (1997) Lipid oxidation: flavor and nutritional quality deterioration in frozen foods. In: Erickson M, Hung YC (eds) Qual frozen food. Springer, Berlin, pp 141–173

    Chapter  Google Scholar 

  5. Teixeira B, Fidalgo L, Mendes R et al (2014) Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: pressurization rate, pressure level and holding time. Innov Food Sci Emerg Technol 22:31–39

    Article  CAS  Google Scholar 

  6. Ramalhosa MJ, Paíga P, Morais S et al (2012) Lipid content of frozen fish: comparison of different extraction methods and variability during freezing storage. Food Chem 131:328–336. doi:10.1016/j.foodchem.2011.07.123

    Article  CAS  Google Scholar 

  7. Yagiz Y, Kristinsson HG, Balaban MO et al (2009) Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chem 116:828–835. doi:10.1016/j.foodchem.2009.03.029

    Article  CAS  Google Scholar 

  8. Patterson MF, Linton M, Doona CJ (2007) Introduction to high pressure processing of foods. In: Doona CJ, Feeherry FE (eds) High press process foods. Blackwell Publishing Ltd, Hoboken, pp 1–14

    Google Scholar 

  9. Cheftel JC, Culioli J (1997) Effects of high pressure on meat : a review. Meat Sci 46:211–236

    Article  CAS  Google Scholar 

  10. Álvarez-Virrueta DR, García-López EG, Montalvo-González E et al (2012) Effect of high hydrostatic pressure on postharvest physiology of the “ataulfo” mango. CYTA J Food 10:173–181. doi:10.1080/19476337.2011.603843

    Article  Google Scholar 

  11. Mújica-Paz H, Valdez-Fragoso A, Samson CT et al (2011) High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4:969–985. doi:10.1007/s11947-011-0543-5

    Article  Google Scholar 

  12. Ríos-Romero E, Tabilo-Munizaga G, Morales-Castro J et al (2012) Effect of high hydrostatic pressure processing on microbial inactivation and physicochemical properties of pomegranate arils. CYTA J Food 10:152–159. doi:10.1080/19476337.2011.604876

    Article  Google Scholar 

  13. Téllez-Luis SJ, Ramírez JA, Pérez-Lamela C et al (2001) Application of high hydrostatic pressure in the food preservation. Cienc Tecnol Aliment 3:66–80

    Article  Google Scholar 

  14. Gormley TR (1992) A note on consumer preference of smoked salmon colour. Irish J Agric Food Res 31:199–202

    Google Scholar 

  15. Hayashi R, Kawamura Y, Nakasa T, Okinaka O (1989) Application of high pressure to food processing: pressurization of egg white and yolk, and properties of gels formed. Agric Biol Chem 53:2935–2939. doi:10.1080/00021369.1989.10869784

    CAS  Google Scholar 

  16. Hendrickx M, Ludikhuyze L, Van Den Broeck I, Weemaes C (1998) Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol 9:197–203. doi:10.1016/S0924-2244(98)00039-9

    Article  CAS  Google Scholar 

  17. Murchie LW, Cruz-Romero M, Kerry JP et al (2005) High pressure processing of shellfish: a review of microbiological and other quality aspects. Innov Food Sci Emerg Technol 6:257–270

    Article  Google Scholar 

  18. Fidalgo LG, Saraiva JA, Aubourg SP et al (2014) Enzymatic activity during frozen storage of Atlantic horse Mackerel (Trachurus trachurus) pre-treated by high-pressure processing. Food Bioprocess Technol 8:493–502. doi:10.1007/s11947-014-1420-9

    Article  Google Scholar 

  19. Fidalgo LG, Saraiva JA, Aubourg SP et al (2014) High pressure effects on the activities of cathepsins B and D of mackerel and horse mackerel muscle. Czech J Food Sci 32:188–193

    Article  CAS  Google Scholar 

  20. Torres JA, Vázquez M, Saraiva JA et al (2013) Lipid damage inhibition by previous high pressure processing in white muscle of frozen horse mackerel. Eur J Lipid Sci Technol 115:1454–1461. doi:10.1002/ejlt.201300027

    Article  CAS  Google Scholar 

  21. Vázquez M, Torres JA, Gallardo JM et al (2013) Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment. Innov Food Sci Emerg Technol 18:24–30

    Article  Google Scholar 

  22. Méndez L, Fidalgo LG, Pazos M et al (2017) Lipid and protein changes related to quality loss in frozen sardine (Sardina pilchardus) earlier processed under high-pressure conditions. Food Bioprocess Technol 10:296–306. doi:10.1007/s11947-016-1815-x

    Article  Google Scholar 

  23. Chapleau NJ, De Lamballerie-Anton MI (2003) Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing. Eur Food Res Technol 216:470–476

    Article  CAS  Google Scholar 

  24. Uresti RM, Velazquez G, Vázquez M et al (2005) Effect of sugars and polyols on the functional and mechanical properties of pressure-treated arrowtooth flounder (Atheresthes stomias) proteins. Food Hydrocoll 19:964–973. doi:10.1016/j.foodhyd.2004.12.006

    Article  CAS  Google Scholar 

  25. Aubourg SP, Tabilo-Munizaga G, Reyes JE et al (2010) Effect of high-pressure treatment on microbial activity and lipid oxidation in chilled coho salmon. Eur J Lipid Sci Technol 112:362–372. doi:10.1002/ejlt.200900173

    CAS  Google Scholar 

  26. Ortea I, Rodríguez A, Tabilo-Munizaga G et al (2010) Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. Eur Food Res Technol 230:925–934

    Article  CAS  Google Scholar 

  27. Torres JA, Saraiva J, Guerra-Rodríguez E et al (2014) Effect of combining high-pressure processing and frozen storage on the functional and sensory properties of horse mackerel (Trachurus trachurus). Innov Food Sci Emerg Technol 21:2–11

    Article  Google Scholar 

  28. Aubourg SP, Torres JA, Saraiva JA et al (2013) Effect of high-pressure treatments applied before freezing and frozen storage on the functional and sensory properties of Atlantic mackerel (Scomber scombrus). LWT Food Sci Technol 53:100–106

    Article  CAS  Google Scholar 

  29. Uresti RM, López-Arias N, Ramírez JA, Vázquez M (2003) Effect of amidated low methoxyl pectin on the mechanical properties and colour attributes of fish mince. Food Technol Biotechnol 41:131–136

    CAS  Google Scholar 

  30. Martelo-Vidal MJ, Guerra-Rodríguez E, Pita-Calvo C, Vázquez M (2016) Reduced-salt restructured European hake (Merluccius merluccius) obtained using microbial transglutaminase. Innov Food Sci Emerg Technol 38:182–188. doi:10.1016/j.ifset.2016.10.004

    Article  CAS  Google Scholar 

  31. Palmeira KR, Mársico ET, Monteiro MLG et al (2016) Ready-to-eat products elaborated with mechanically separated fish meat from waste processing: challenges and chemical quality. CyTA J Food 14:227–238. doi:10.1080/19476337.2015.1087050

    Article  Google Scholar 

  32. Cortez-Vega WR, Fonseca GG, Feisther VA et al (2013) Evaluation of frankfurters obtained from croaker (Micropogonias furnieri) surimi and mechanically deboned chicken meat surimi-like material. CyTA J Food 11:27–36

    Article  Google Scholar 

  33. da Silva EVC, de Lourenço LFH, Pena RS (2017) Optimization and characterization of gelatin from kumakuma (Brachyplatystoma filamentosum) skin. CyTA J Food. 15:361–368. doi:10.1080/19476337.2016.1266391

    Article  Google Scholar 

  34. Martelo-Vidal MJ, Mesas JM, Vázquez M (2012) Low-salt restructured fish products from Atlantic mackerel (Scomber scombrus) with texture resembling turkey breast. Food Sci Technol Int 18:251–259. doi:10.1177/1082013211415175

    Article  CAS  Google Scholar 

  35. Tironi V, Lebail A, De Lamballerie M (2007) Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. J Food Sci 72:C381–C387

    Article  CAS  Google Scholar 

  36. Matser AM, Stegeman D, Kals J, Bartels PV (2000) Effects of high pressure on colour and texture of fish. High Press Res 19:109–115

    Article  Google Scholar 

  37. Andrés-Bello A, García-Segovia P, Ramírez JA, Martínez-Monzó J (2011) Production of cold-setting restructured fish products from gilthead sea bream (Sparus aurata) using microbial transglutaminase and regular and low-salt level producción de reestructurados de dorada (Sparus aurata) en frío usando transglutaminasa y niveles. CyTA J Food 9:121–125

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by (CSIC-Spain) through the Research Project #2017-70E032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vázquez.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pita-Calvo, C., Guerra-Rodríguez, E., Saraiva, J.A. et al. High-pressure processing before freezing and frozen storage of European hake (Merluccius merluccius): effect on mechanical properties and visual appearance. Eur Food Res Technol 244, 423–431 (2018). https://doi.org/10.1007/s00217-017-2969-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2969-0

Keywords

Navigation