Skip to main content

Advertisement

Log in

Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Response surface methodology was used to study the effect of pressure (0–600 MPa) and time (0–1,800 s) on the surface hydrophobicity, reactive sulphydryl groups content and the flowing properties of bovine myofibrillar proteins in solution at 10 g/l. Results show that high-pressure treatment induced a threefold increase of the surface hydrophobicity of myofibrillar proteins between 0 MPa and 450 MPa. The same upward trend was obtained on the reactive sulphydryl groups, which climbed from 40 to 69%. Concerning rheological properties of solutions, the flow index tended towards a maximum value close to the Newtonian behaviour (n=1), whereas the viscosity coefficient decreased with the increase of pressure. The statistical analysis of responses proves that pressure and its quadratic effect are the most important significant effects in comparison with the effects of time. Changes in myofibrillar proteins interactions and rheological properties are related to a structure change of the proteins, and could induce better functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Bridgman PW (1914) J Biol Chem 19:511–512

    CAS  Google Scholar 

  2. Hayashi R, Kawamura Y, Nakasa T, Okinaka O (1989) Agric Biol Chem 53:2935–2939

    Google Scholar 

  3. Famelart M-H, Chapron L, Piot M, Brule G, Durier C (1998) J Food Eng 36:149–164

    Google Scholar 

  4. Van Camp J, Huyghebaert A (1995) Lebensm-Wiss Technol 28:111–117

    Google Scholar 

  5. Nagashima Y, Ebina H, Tanaka M, Taguchi T (1993) Food Res Int 26:119–123

    Google Scholar 

  6. Sareevoravikul R, Simpson BK, Ramaswany HS (1996) J Aquat Food Prod Technol 5:65–79

    Google Scholar 

  7. Ko W-C (1996) Fish Sci 62:101–104

    CAS  Google Scholar 

  8. Perez-Mateos M, Lourenço H, Montero P, Borderias AJ (1997) J Agric Food Chem 45:44–49

    Google Scholar 

  9. Fernandez-Martin F, Perez-Mateos M, Montero P (1998) J Agric Food Chem 46:3257–3264

    Google Scholar 

  10. Angsupanich K, Ledward DA (1998) Food Chem 63:39–50

    Google Scholar 

  11. Ikeuchi Y, Tanji H, Kim K, Suzuki A (1992) J Agric Food Chem 40:1751–1755

    Google Scholar 

  12. Ikeuchi Y, Tanji H, Kim K, Suzuki A (1992) J Agric Food Chem 40:1759–1761

    Google Scholar 

  13. Yamamoto K, Hayashi S, Yasui T (1993) Bioscie Biotechnol Biochem 57:383–389

    Google Scholar 

  14. Galazka VB, Dickinson E, Ledward D (2001) Innov Food Sci Emerging Technol 1:177–185

    Google Scholar 

  15. Offer G, Moos C, Starr R (1973) J Mol Biol 74:653–676

    Google Scholar 

  16. Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–766

    Google Scholar 

  17. Kato A, Nakai S (1980) Biochem Biophys 634:13–80

    Google Scholar 

  18. Ellman GL (1958) Arch Biochem Biophys 74:443–450

    CAS  Google Scholar 

  19. Cochran WG, Cox GM (1992) Experimental designs. Wiley, New York

  20. Derringer G, Suich R (1980) J Qual Technol 12:214–219

    Google Scholar 

  21. Hayakawa I, Linko Y-Y, Linko P (1996) Lebensm-Wiss Technol 29:756–762

    Article  CAS  Google Scholar 

  22. O'Shea JM, Horgan DJ, Macfarlane JJ (1976) Aust J Biol Sci 29:197–207

    Google Scholar 

  23. Perry SV (1967) Progress Biophys Mol Biol 17:325–381

    Article  CAS  Google Scholar 

  24. Hofmann K, Hamm R (1978) Adv Food Res 24:1-111

    Google Scholar 

  25. Pauling L (1960) Chemical bond. In: Pauling, L (ed) The nature of the chemical bond, 3rd edn. Cornell University Press, New York p 85

  26. Morild E (1981) AdvProtein Chem 34:93–166

    CAS  Google Scholar 

  27. Perry SV, Cotterill J (1965) Nature (London) 206:161–163

    Google Scholar 

  28. Sano T, Noguchi J, Matsumoto J, Tsuchiya T (1989) J Food Sci 54:800–804

    Google Scholar 

Download references

Acknowledgements

The region Pays de Loire supported this work. Authors thank LEIMA (INRA-Nantes) and Sylviane Delépine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie I. de Lamballerie-Anton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapleau, N.J., de Lamballerie-Anton, M.I. Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing. Eur Food Res Technol 216, 470–476 (2003). https://doi.org/10.1007/s00217-003-0684-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0684-5

Keywords

Navigation