Skip to main content
Log in

Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we report a zeolitic imidazolate framework (ZIF-67) which could catalyze 3,3′,5,5′-tetramethylbenzidine (TMB) to produce a yellow chromogenic reaction. ZIF-67 showed high peroxidase-like activity compared with copper-based metal−organic framework nanoparticles (Cu-MOF), zinc-based metal−organic framework nanoparticles (ZIF-8), and horseradish peroxidase (HPR). We discovered for the first time that the cobalt-based metal−organic framework nanoparticles possess intrinsic peroxidase-like activity without H2O2, which can be employed to quantitatively monitor the H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu T, Feng X, Elsaidi SK, Thallapally PK, Carreon MA. ZIF-8 membranes for Kr/Xe separation. Ind Eng Chem Res. 2017;56(6):1682–6.

  2. Ray KG, Olmsted DL, Burton JMR, Yao H, Laird BB, Asta M. Gas membrane selectivity enabled by zeolitic imidazolate framework electrostatics. Chem Mater. 2014;26(13):3976–85.

    Article  CAS  Google Scholar 

  3. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008;319(5865)::939–43.

    Article  CAS  Google Scholar 

  4. Taylorpashow KM, Della RJ, Xie Z, Tran S, Lin W. Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261–3.

    Article  CAS  Google Scholar 

  5. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172–8.

    Article  CAS  Google Scholar 

  6. Roda B, Marassi V, Zattoni A, Borghi F, Anand R, Agostoni V, et al. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal–organic framework nanoparticles. Anal Bioanal Chem. 2018;410(21):5245–53.

    Article  CAS  Google Scholar 

  7. Chen EX, Yang H, Zhang J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg Chem. 2014;53(11):5411–3.

    Article  CAS  Google Scholar 

  8. Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal Chem. 2013;85(15):7550–7.

    Article  CAS  Google Scholar 

  9. Li Y, Zhou K, He M, Yao J. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater. 2016;234:287–92.

    Article  CAS  Google Scholar 

  10. Zhang F, Wei Y, Wu X, Jiang H, Wang W, Li H. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. J Am Chem Soc. 2014a;136(40):13963–6.

    Article  CAS  Google Scholar 

  11. Tran UPN, Le KKA, Phan NTS. Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. Catalogue. 2011;1(2):120–7.

    Article  CAS  Google Scholar 

  12. Isimjan TT, Kazemian H, Rohani S, Ray AK. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes. J Mater Chem. 2010;20(45):10241–5.

    Article  CAS  Google Scholar 

  13. Pimentel BR, Parulkar A, Zhou EK, Brunelli NA, Lively RP. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. ChemSusChem. 2014;7(12):3202–40.

    Article  CAS  Google Scholar 

  14. Phan A, Doonan CJ, Uriberomo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res. 2010;43(1):58–67.

    Article  CAS  Google Scholar 

  15. Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev. 2014;43(16):5982–93.

    Article  CAS  Google Scholar 

  16. Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev. 2012;112(2):1196–231.

    Article  CAS  Google Scholar 

  17. Joshi B, Park S, Samuel E, Hong SJ, An S, Kim MW, et al. Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. J Electroanal Chem. 2018;810:239–47

    Article  CAS  Google Scholar 

  18. Foo ML, Matsuda R, Kitagawa S. Functional hybrid porous coordination polymers. Chem Mater. 2013;26(1):310–22.

    Article  Google Scholar 

  19. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. ChemInform. 2013;44(45):974.

    Article  Google Scholar 

  20. Wang C, Liu D, Lin W. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc. 2013;135(36):13222–34.

    Article  CAS  Google Scholar 

  21. GM C. The cell: a molecular approach. 2nd ed. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  22. Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47(4):1097–105.

    Article  CAS  Google Scholar 

  23. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46(42):8017–9.

    Article  Google Scholar 

  24. Kai Z, Wei G, Sisi Z, Cuiling Z, Yuezhong X. SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta. 2015;141:47–52.

    Article  Google Scholar 

  25. Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst. 2012;137(7):1706–12.

    Article  CAS  Google Scholar 

  26. Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors Actuators B Chem. 2015;218:42–50.

    Article  CAS  Google Scholar 

  27. Yi X, Dong W, Zhang X, Xie J, Huang Y. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Anal Bioanal Chem. 2016;408(30):1–8.

    Article  Google Scholar 

  28. Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem Commun. 2014b;50(9):1092–4.

    Article  CAS  Google Scholar 

  29. Cui F, Deng Q, Sun L. Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 2015;5(119):98215–21.

    Article  CAS  Google Scholar 

  30. Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S. Copper-based metal–organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl Mater Interfaces. 2017a;9(29):24440–5.

    Article  CAS  Google Scholar 

  31. Mariahormigos R, Jurado BS, Escarpa A. Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. 2018;90(16):9830–7.

  32. Ávila EFD, Zhao M, Campuzano S, Ricci F, Pingarrón JM, Mascini M, et al. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–7.

    Article  Google Scholar 

  33. Cinti S, Valdés-Ramírez G, Gao W, Li J, Palleschi G, Wang J. Microengine-assisted electrochemical measurements at printable sensor strips. Chem Commun. 2015;51(41):8668–71.

    Article  CAS  Google Scholar 

  34. Xu D, Gao M, Deng C, Zhang X. Ultrasensitive enrichment of phosphopeptides with Ti4+ immobilized SiO2 graphene-like multilayer nanosheets. Analyst. 2016;141(11):3421–7. https://doi.org/10.1039/C6AN00361C.

    Article  CAS  PubMed  Google Scholar 

  35. Low DW, And JRW, Gray HB. Photoinduced oxidation of microperoxidase-8: generation of Ferryl and cation-radical porphyrins. J Am Chem Soc. 2013;118(1):117–20.

    Article  Google Scholar 

  36. Solomon EI1, Szilagyi RK, DeBeer George S, Basumallick L. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. ChemInform. 2004;104(2):419.

  37. Bhardwaj N, Bhardwaj SK, Mehta J, Kim KH, Deep A. MOF-bacteriophage biosensor for highly sensitive and specific detection of S. aureus. ACS Appl Mater Interfaces. 2017;9(39):33589–98

  38. Dong Y, Zhang J, Jiang P, Wang GL, Wu XM, Zhao H, et al. Superior peroxidase memitic activity of carbon dots/Pt nanocomposites rely on synergistic effects. New J Chem. 2015;39(5):4141–6.

    Article  CAS  Google Scholar 

  39. Wang C, Gao J, Tan H. Integrated antibody with catalytic metal-organic Framework for colorimetric immunoassay. 2018;10(30):25113–20 https://doi.org/10.1021/acsami.8b07225.

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was provided by the Agricultural Science Promotion Plan of Shanghai 273 (2017, No. 4-4), the Science and technology innovation plan of Shanghai (No. 18495800400), the Natural Science Foundation of China (No. 81572809), and the Natural Science Foundation for 275 Young Scientists of China (No. 81502504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongpo Xu or Qing Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xu, D., Ma, L. et al. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal Bioanal Chem 410, 7145–7152 (2018). https://doi.org/10.1007/s00216-018-1317-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1317-y

Keywords

Navigation