Skip to main content
Log in

Activity regulation and applications of metal–organic framework-based nanozymes

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a new generation of artificial enzymes, nanozymes show outstanding advantages such as high stability, low cost, and facile synthesis, which endow them with promising applications in biomedical and environmental fields. Among the various reported nanozymes, metal–organic frameworks (MOFs) could mimic the active center of natural enzymes and provide a hydrophobic environment, which makes MOFs attractive alternatives to natural enzymes. Owing to the highly structural diversity and tailorability of MOFs, rational design will contribute to improve the activity of MOF-based nanozymes and promote their potential applications in both biomedical and environmental fields. Therefore, a comprehensive summary of activity regulatory strategies of MOF-based nanozymes is urgently needed. Firstly, we summarized the activity regulatory strategies of MOFs with intrinsic enzyme-like activities via modulation of metal nodes, ligands, structures and morphologies. Then the applications of MOF-based nanozymes in biosensing, hazardous degradation, antibacterial, and cancer therapy were also introduced. Finally, the current challenges and future perspectives were discussed in depth. It is highly expected that this review will provide a better understanding on the rational design of novel high-performance MOF-based nanozymes.

Graphical Abstract

摘要

纳米酶作为一代新型人工酶, 由于高稳定性、低成本和易于合成等优点, 引起了人们的广泛关注。其中, 金属有机框架结构(metal organic frameworks, MOFs) 具有模拟天然酶活性中心及其周围微环境的结构特点, 有望成为天然酶在实际应用中的潜在替代品和竞争者。因其结构的多样性和可调性, 理性设计MOF基纳米酶将有助于提高其催化活性并拓展应用。因此, 总结MOF基纳米酶的活性调控策略具有重要意义。在本综述中, 我们首先总结了MOF基纳米酶的调控策略包括金属节点、配体和形貌等, 然后介绍了MOF基纳米酶在生物传感、污染物降解以及抗菌和癌症治疗等方面的应用研究进展, 最后对其当前面临的挑战和未来的发展趋势进行探讨。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 2013;42(15):6290. https://doi.org/10.1039/C2CS35231A.

    Article  CAS  PubMed  Google Scholar 

  2. Liese A, Hilterhaus L. Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev. 2013;42(15):6236. https://doi.org/10.1039/c3cs35511j.

    Article  CAS  PubMed  Google Scholar 

  3. Lian X, Fang Y, Elizabeth J, Wang Q, Li J, Sayan B, Christina L, Wang X, Zhou HC. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev. 2017;46(11):3386. https://doi.org/10.1039/c7cs00058h.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Y, Liu B, Yang R, Liu J. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug Chem. 2017;28(12):2903. https://doi.org/10.1021/acs.bioconjchem.7b00673.

    Article  CAS  PubMed  Google Scholar 

  5. Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B. 2020;8(44):10065. https://doi.org/10.1039/D0TB02051F.

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Jiang M, Zhu D, Zhang J, Wei G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure and function-specific applications: a tutorial review. Chem Eng J. 2022;428:131118. https://doi.org/10.1016/j.cej.2021.131118.

    Article  CAS  Google Scholar 

  7. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577. https://doi.org/10.1038/nnano.2007.260.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chong Y, Liu Q, Ge C. Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today. 2021;37:101076. https://doi.org/10.1016/j.nantod.2021.101076.

    Article  CAS  Google Scholar 

  9. Fang G, Kang R, Cai S, Ge C. Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: progress, challenges and prospects. Nano Today. 2023;48:101755. https://doi.org/10.1016/j.nantod.2023.101755.

    Article  Google Scholar 

  10. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190. https://doi.org/10.1021/acs.accounts.9b00140.

    Article  CAS  PubMed  Google Scholar 

  11. Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-modified Au nanoparticles: functional nanozyme bioreactors for cascaded catalysis and catalysts for chemodynamic treatment of cancer cells. ACS Nano. 2022;16(11):18232. https://doi.org/10.1021/acsnano.2c05710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang G, Li W, Shen X, Perez-Aguilar JM, Chong Y, Gao X, Chai Z, Chen C, Ge C, Zhou R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negativebacteria. Nat Commun. 2018;9(1):129. https://doi.org/10.1038/s41467-017-02502-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C, Yin JJ. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv Funct Mater. 2018;28(28):1801484. https://doi.org/10.1002/adfm.201801484.

    Article  CAS  Google Scholar 

  14. Wang D, Zhang B, Ding H, Liu D, Xiang J, Gao XJ, Chen X, Li Z, Yang L, Duan H, Zheng J, Liu Z, Jiang B, Liu Y, Xie N, Zhang H, Yan X, Fan K, Nie G. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today. 2021;40:101243. https://doi.org/10.1016/j.nantod.2021.101243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem Eng J. 2021;408:127240. https://doi.org/10.1016/j.cej.2020.127240.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Liu Y, Guo C, Yin C, Xie C, Fan Q. Self-amplified competitive coordination of MnO2-doped CeO2 nanozyme for synchronously activated combination therapy. Adv Funct Mater. 2023;33(2):2209927. https://doi.org/10.1002/adfm.202209927.

    Article  CAS  Google Scholar 

  17. Chen M, Wang Z, Shu J, Jiang X, Wang W, Shi ZH, Lin YW. Mimicking a natural enzyme system: cytochrome C oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome C. Inorg Chem. 2017;56(16):9400. https://doi.org/10.1021/acs.inorgchem.7b01393.

    Article  CAS  PubMed  Google Scholar 

  18. Sun H, Zhou Y, Ren J, Qu X. Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed. 2018;57(30):9224. https://doi.org/10.1002/anie.201712469.

    Article  CAS  Google Scholar 

  19. Zhang J, Wu S, Ma L, Wu P, Liu J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res. 2020;13(2):455. https://doi.org/10.1007/s12274-020-2629-8.

    Article  CAS  Google Scholar 

  20. Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal-organic frameworks: a future toolbox for biomedicine? Chem Soc Rev. 2020;49(24):9121. https://doi.org/10.1039/d0cs00883d.

    Article  CAS  PubMed  Google Scholar 

  21. Goetjen TA, Liu J, Wu Y, Sui J, Zhang X, Hupp JT, Farha OK. Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chem Commun. 2020;56(72):10409. https://doi.org/10.1039/D0CC03790G.

    Article  CAS  Google Scholar 

  22. Li C, Zhao DH, Long HL, Li M. Recent advances in carbonized non-noble metal-organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021;40(10):2657. https://doi.org/10.1007/s12598-020-01694-w.

    Article  CAS  Google Scholar 

  23. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal-organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413. https://doi.org/10.1007/s12598-019-01259-6.

    Article  CAS  Google Scholar 

  24. Chen Z, Kirlikovali KO, Li P, Farha OK. Reticular chemistry for highly porous metal-organic frameworks: the chemistry and applications. Acc Chem Res. 2022;55(4):579. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  PubMed  Google Scholar 

  25. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren Z, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-02001649-1.

    Article  CAS  Google Scholar 

  26. Lin YM, Fan HS, Zhu CZ, Xu J. Metal-organic framework (MOF)-derived selenidation strategy to prepare porous (Zn, Cu)CoSex micro/nanostructures for sodium-ion batteries. Rare Met. 2022;41(12):4104. https://doi.org/10.1007/s12598-022-02095-x.

    Article  CAS  Google Scholar 

  27. Wang D, Zhao ZY, Wang P, Wang SM, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;41(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

    Article  CAS  Google Scholar 

  28. Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The current status of MOF and COF applications. Angew Chem Int Ed. 2021;60(45):23975. https://doi.org/10.1002/anie.202106259.

    Article  CAS  Google Scholar 

  29. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev. 2020;120(2):1438. https://doi.org/10.1021/acs.chemrev.9b00223.

    Article  CAS  PubMed  Google Scholar 

  30. Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv Mater. 2020;32(49):2003065. https://doi.org/10.1002/adma.202003065.

    Article  CAS  Google Scholar 

  31. Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron. 2019;137:178. https://doi.org/10.1016/j.bios.2019.04.061.

    Article  CAS  PubMed  Google Scholar 

  32. Yi H, Qin R, Ding S, Wang Y, Li S, Zhao Q, Pan F. Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv Funct Mater. 2020;31(6):2006970. https://doi.org/10.1002/adfm.202006970.

    Article  CAS  Google Scholar 

  33. Liu J, Liang J, Xue J, Liang K. Metal-organic frameworks as a versatile materials platform for unlocking new potentials in biocatalysis. Small. 2021;17(32):e2100300. https://doi.org/10.1002/smll.202100300.

    Article  CAS  PubMed  Google Scholar 

  34. Wang F, Chen L, Liu D, Ma W, Dramou P, He H. Nanozymes based on metal-organic frameworks: construction and prospects. Trends Anal Chem. 2020;133:116080. https://doi.org/10.1016/j.trac.2020.116080.

    Article  CAS  Google Scholar 

  35. Ni D, Lin J, Zhang N, Li S, Xue Y, Wang Z, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. Combinational application of metal-organic frameworks-based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(3):e1773. https://doi.org/10.1002/wnan.1773.

    Article  CAS  PubMed  Google Scholar 

  36. Ali A, Ovais M, Zhou H, Rui Y, Chen C. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials. 2021;275:120951. https://doi.org/10.1016/j.biomaterials.2021.120951.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Chen J, Wu W, Fang Y, Dong S. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc. 2020;142(36):15569. https://doi.org/10.1021/jacs.0c07273.

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, Jana D, Zhao Y. Metal-organic framework derived nanozymes in biomedicine. Acc Chem Res. 2020;53(7):1389. https://doi.org/10.1021/acs.accounts.0c00268.

    Article  CAS  PubMed  Google Scholar 

  39. Xiong Y, Chen S, Ye F, Su L, Zhang C, Shen S, Zhao S. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun (Camb). 2015;51(22):4635. https://doi.org/10.1039/c4cc10346g.

    Article  CAS  PubMed  Google Scholar 

  40. Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas SA. Cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm. 2017;19(39):5915. https://doi.org/10.1039/c7ce01053b.

    Article  CAS  Google Scholar 

  41. Song H, Ye K, Peng Y, Wang L, Niu X. Facile colorimetric detection of alkaline phosphatase activity based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods. J Mater Chem B. 2019;7(38):5834. https://doi.org/10.1039/c9tb01515a.

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Li K, Li C, Gu J. Intrinsic apyrase-like activity of cerium-based metal-organic frameworks (MOFs): dephosphorylation of adenosine tri- and diphosphate. Angew Chem Int Ed Engl. 2020;59(51):22952. https://doi.org/10.1002/anie.202008259.

    Article  CAS  PubMed  Google Scholar 

  43. Ying M, Yang G, Xu Y, Ye H, Lin X, Lu Y, Pan H, Bai Y, Du M. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst. 2021;147(1):40. https://doi.org/10.1039/d1an01817e.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Yang J, Li K, Gu J. Hierarchically macro-microporous Ce-based MOFs for the cleavage of DNA. ACS Mater Lett. 2022;4(2):385. https://doi.org/10.1021/acsmaterialslett.1c00797.

    Article  CAS  Google Scholar 

  45. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta. 2017;184(12):4629. https://doi.org/10.1007/s00604-017-2509-4.

    Article  CAS  Google Scholar 

  46. Li X, Qi M, Li C, Dong B, Wang J, Weir MD. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J Mater Chem B. 2019;7(44):6955. https://doi.org/10.1039/C9TB01743G.

    Article  CAS  PubMed  Google Scholar 

  47. Mian MR, Islamoglu T, Afrin U, Goswami S, Cao R, Kirlikovali KO, Hall MG, Peterson GW, Farha OK. Catalytic degradation of an organophosphorus agent at Zn-OH sites in a metal-organic framework. Chem Mater. 2020;32(16):6998. https://doi.org/10.1021/acs.chemmater.0c02373.

    Article  CAS  Google Scholar 

  48. Mian MR, Chen H, Cao R, Kirlikovali KO, Snurr RQ, Islamoglu T, Farha OK. Insights into catalytic hydrolysis of organophosphonates at M-OH sites of azolate-based metal organic frameworks. J Am Chem Soc. 2021;143(26):9893. https://doi.org/10.1021/jacs.1c03901.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao X, Zhang N, Yang T, Liu D, Jing X, Wang D, Yang Z, Xie Y, Meng L. Bimetallic metal-organic frameworks: enhanced peroxidase-like activities for the self-activated cascade reaction. ACS Appl Mater Interfaces. 2021;13(30):36106. https://doi.org/10.1021/acsami.1c05615.

    Article  CAS  PubMed  Google Scholar 

  50. Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed. 2008;47(22):4144. https://doi.org/10.1002/anie.200705998.

    Article  CAS  Google Scholar 

  51. Valekar AH, Batule BS, Kim MI, Cho KH, Hong DY, Lee UH, Chang JS, Park HG, Hwang YK. Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens Bioelectron. 2018;100:161. https://doi.org/10.1016/j.bios.2017.08.056.

    Article  CAS  PubMed  Google Scholar 

  52. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM. Large-pore apertures in a series of metal-organic frameworks. Science. 2012;336(6084):1018. https://doi.org/10.1126/science.1220131.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Kong X, Deng H, Yan F, Kim J, Swisher JA, Smit B, Yaghi OM, Reimer JA. Mapping of functional groups in metal-organic frameworks. Science. 2013;341(6148):882. https://doi.org/10.1126/science.1238339.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Inter Ed. 2012;51(41):10307. https://doi.org/10.1002/anie.201204475.

    Article  CAS  Google Scholar 

  55. Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, Mathieu B, Zou X, Zhou HC. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J Am Chem Soc. 2014;136(40):13983. https://doi.org/10.1021/ja507269n.

    Article  CAS  PubMed  Google Scholar 

  56. Liu F, He J, Zeng M, Hao J, Guo Q, Song Y, Wang L. Cu-hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose. J Nanopart Res. 2016;18(5):106. https://doi.org/10.1007/s11051-0163416-z.

    Article  Google Scholar 

  57. Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X, Zhao D, Li Z, Xing H, Wei H. Monitoring of Heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem. 2017;89(21):11552. https://doi.org/10.1021/acs.analchem.7b02895.

    Article  CAS  PubMed  Google Scholar 

  58. Lai X, Shen Y, Gao S, Chen Y, Cui Y, Ning D, Ji X, Liu Z, Wang L. The Mn-modified porphyrin metal-organic framework with enhanced oxidase-like activity for sensitively colorimetric detection of glutathione. Biosens Bioelectron. 2022;213:114446. https://doi.org/10.1016/j.bios.2022.114446.

    Article  CAS  PubMed  Google Scholar 

  59. Li L, Li H, Shi L, Shi L, Li T. Tin porphyrin-based nanozymes with unprecedented superoxide dismutase mimicking activities. Langmuir. 2022;38(23):72. https://doi.org/10.1021/acs.langmuir.2c00778.

    Article  CAS  Google Scholar 

  60. Liang X, Chen Y, Wen K, Han H, Li Q. Urate oxidase loaded in PCN-222(Fe) with peroxidase-like activity for colorimetric detection of uric acid. J Mater Chem B. 2021;9:6811–6817. https://doi.org/10.1039/D1TB01424B.

    Article  Google Scholar 

  61. Kulandaivel S, Lin CH, Yeh YC. The bi-metallic MOF-919 (Fe–Cu) nanozyme capable of bifunctional enzyme-mimicking catalytic activity. Chem Commun. 2022;58(4):569. https://doi.org/10.1039/d1cc05908d.

    Article  CAS  Google Scholar 

  62. Vermoortele F, Vandichel M, Van de Voorde B, Ameloot R, Waroquier M, Van Speybroeck V, De Vos DE. Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. Angew Chem Int Ed. 2012;51(20):4887. https://doi.org/10.1002/anie.201108565.

    Article  CAS  Google Scholar 

  63. Katz MJ, Moon SY, Mondloch JE, Beyzavi MH, Stephenson CJ, Hupp JT, Farha OK. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2. Chem Sci. 2015;6(4):2286. https://doi.org/10.1039/c4sc03613a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-micro Lett. 2020;12(1):184. https://doi.org/10.1007/s40820-020-00520-3.

    Article  ADS  CAS  Google Scholar 

  65. Wang F, Stahl SS. Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron−proton transfer mediators. Acc Chem Res. 2020;53(3):561. https://doi.org/10.1021/acs.accounts.9b00544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu C, Fang R, Luque R, Chen L, Li Y. Functional metal-organic frameworks for catalytic applications. Coord Chem Rev. 2019;388:268. https://doi.org/10.1016/j.ccr.2019.03.005.

    Article  CAS  Google Scholar 

  67. Wu J, Wang Z, Jin X, Zhang S, Li T, Zhang Y, Xing H, Yu Y, Zhang H, Gao X, Wei H. Hammett relationship in oxidase-mimicking metal-organic frameworks revealed through a protein-engineering-inspired strategy. Adv Mater. 2021;33(3):e2005024. https://doi.org/10.1002/adma.202005024.

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Huang R, Qi W, Su R, He Z. Preparation of amorphous MOF based biomimetic nanozyme with high laccase and catecholase-like activity for the degradation and detection of phenolic compounds. Chem Eng J. 2022;434:134677. https://doi.org/10.1016/j.cej.2022.134677.

    Article  CAS  Google Scholar 

  69. Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces. 2017;9(2):1352. https://doi.org/10.1021/acsami.6b15124.

    Article  CAS  PubMed  Google Scholar 

  70. Fonseca J, Gong T, Jiao L, Jiang HL. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J Mater Chem A. 2021;9(17):10562. https://doi.org/10.1039/d1ta01043c.

    Article  CAS  Google Scholar 

  71. Huang L, Sun DW, Pu H. Photosensitized peroxidase mimicry at the hierarchical 0D/2D heterojunction-like quasi metal-organic framework interface for boosting biocatalytic disinfection. Small. 2022;18:e2200178. https://doi.org/10.1002/smll.202200178.

    Article  CAS  PubMed  Google Scholar 

  72. Bennett TD, Cheetham AK. Amorphous metal-organic frameworks. Acc Chem Res. 2014;47(5):1555. https://doi.org/10.1021/ar5000314.

    Article  CAS  PubMed  Google Scholar 

  73. Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. 2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem. 2022;414(9):2971. https://doi.org/10.1007/s00216-022-03985-w.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater. 2016;28(21):4149. https://doi.org/10.1002/adma.201600108.

    Article  CAS  PubMed  Google Scholar 

  75. Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater. 2017;29(32):1700102. https://doi.org/10.1002/adma.201700102.

    Article  CAS  Google Scholar 

  76. Huang W, Xu Y, Wang Z, Liao K, Zhang Y, Sun Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta. 2022;249:123612. https://doi.org/10.1016/j.talanta.2022.123612.

    Article  CAS  PubMed  Google Scholar 

  77. Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, Bosch M, Zou X, Zhou HC. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J Am Chem Soc. 2014;136(40):13983. https://doi.org/10.1021/ja507269n.

    Article  CAS  PubMed  Google Scholar 

  78. Komkova MA, Karyakina EE, Karyakin AA. Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc. 2018;140(36):11302. https://doi.org/10.1021/jacs.8b05223.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang L, Zhang Y, Wang Z, Cao F, Sang Y, Dong K, Pu F, Ren J, Qu X. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz. 2019;6(8):1682. https://doi.org/10.1039/c9mh00339h.

    Article  CAS  Google Scholar 

  80. Ren G, Dong F, Zhao Z, Li K, Lin Y. Structure defect tuning of metal-organic frameworks as a nanozyme regulatory strategy for selective online electrochemical analysis of uric acid. ACS Appl Mater Interfaces. 2021;13:52987. https://doi.org/10.1021/acsami.1c17974.

    Article  CAS  PubMed  Google Scholar 

  81. Moon SY, Liu Y, Hupp JT, Farha OK. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. Angew Chem Int Ed. 2015;54(23):6795. https://doi.org/10.1002/anie.201502155.

    Article  CAS  Google Scholar 

  82. Li S, Liu X, Chai H, Huang Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAC Trends Anal Chem. 2018;105:391. https://doi.org/10.1016/j.trac.2018.06.001.

    Article  CAS  Google Scholar 

  83. Liu Y, Zhou M, Cao W, Wang X, Wang Q, Li S, Wei H. Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal Chem. 2019;91:8170. https://doi.org/10.1016/j.bios.2016.06.036.

    Article  CAS  PubMed  Google Scholar 

  84. Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C. Glucose oxidase-integrated metal–organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces. 2019;11(25):22096. https://doi.org/10.1021/acsami.9b03004.

    Article  CAS  PubMed  Google Scholar 

  85. Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal-organic framework-based nanozymes and their applications. Coord Chem Rev. 2021;449:214216. https://doi.org/10.1016/j.ccr.2021.214216.

    Article  CAS  Google Scholar 

  86. Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y. Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl Mater Interfaces. 2019;11(47):44466. https://doi.org/10.1021/acsami.9b17488.

    Article  CAS  PubMed  Google Scholar 

  87. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta. 2015;856:90. https://doi.org/10.1016/j.aca.2014.11.026.

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron. 2016;86:432. https://doi.org/10.1016/j.bios.2016.06.036.

    Article  CAS  PubMed  Google Scholar 

  89. Badoei-dalfard A, Sohrabi N, Karami Z, Sargazi G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/ Th-MOF for uric acid sensing in biological samples. Biosens Bioelectron. 2019;141:111420. https://doi.org/10.1016/j.bios.2019.111420.

    Article  CAS  PubMed  Google Scholar 

  90. Wang C, Tang G, Tan H. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta. 2018;185(10):475. https://doi.org/10.1007/s00604-018-3011-3.

    Article  CAS  PubMed  Google Scholar 

  91. Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. An overview of the use of nanozymes in antibacterial applications. Chem Eng J. 2021;418:129431. https://doi.org/10.1016/j.cej.2021.129431.

    Article  CAS  Google Scholar 

  92. Liu J, Wu D, Zhu N, Wu Y, Li G. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Technol. 2021;109:413. https://doi.org/10.1016/j.tifs.2021.01.012.

    Article  CAS  Google Scholar 

  93. Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano. 2019;13(5):5222. https://doi.org/10.1021/acsnano.8b09501.

    Article  CAS  PubMed  Google Scholar 

  94. Zhuang W, Yuan D, Li JR, Luo Z, Zhou HC. Highly potent bactericidal activity of porous metal-organic frameworks. Adv Healthc Mater. 2012;1(2):225. https://doi.org/10.1002/adhm.201100043.

    Article  CAS  PubMed  Google Scholar 

  95. Liu Z, Wang F, Ren J, Qu X. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials. 2019;208:21. https://doi.org/10.1016/j.biomaterials.2019.04.007.

    Article  CAS  PubMed  Google Scholar 

  96. Wang C, Jia X, Zhen W, Zhang M, Jiang X. Small-sized MOF-constructed multifunctional diagnosis and therapy platform for tumor. ACS Biomater Sci Eng. 2019;5(9):4435. https://doi.org/10.1021/acsbiomaterials.9b00813.

    Article  CAS  PubMed  Google Scholar 

  97. Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano. 2017;11(7):7006. https://doi.org/10.1021/acsnano.7b02533.

    Article  CAS  PubMed  Google Scholar 

  98. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc. 2018;140(17):5670. https://doi.org/10.1021/jacs.8b01072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-like copper(II)-based metal-organic framework through relief hypoxia and GSH-depletion co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Appl Mater Interfaces. 2020;12(15):17254. https://doi.org/10.1021/acsami.0c01539.

    Article  CAS  PubMed  Google Scholar 

  100. Gong T, Li Y, Lv B, Wang H, Liu Y, Yang W, Wu Y, Jiang X, Gao H, Zheng X, Bu W. Full-process radiosensitization based on nanoscale metal-organic frameworks. ACS Nano. 2020;14(3):3032. https://doi.org/10.1021/acsnano.9b07898.

    Article  CAS  PubMed  Google Scholar 

  101. Liu F, Lin L, Zhang Y, Wang Y, Sheng S, Xu C, Tian H, Chen X. A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv Mater. 2019;31(40):e1902885. https://doi.org/10.1002/adma.201902885.

    Article  CAS  PubMed  Google Scholar 

  102. Xue T, Xu C, Wang Y, Wang Y, Tian H, Zhang Y. Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomater Sci. 2019;7(11):4615. https://doi.org/10.1039/c9bm01044k.

    Article  CAS  PubMed  Google Scholar 

  103. Ma X, Ren X, Guo X, Fu C, Wu Q, Tan L, Li H, Zhang W, Chen X, Zhong H, Meng X. Multifunctional iron-based metal-organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials. 2019;214:119223. https://doi.org/10.1016/j.biomaterials.2019.119223.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang L, Wan SS, Li CX, Xu L, Cheng H, Zhang XZ. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion. Nano Lett. 2018;18(12):7609. https://doi.org/10.1021/acs.nanolett.8b03178.

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Li Y, Gao Z, Chen F, You C, Wu H, Sun K, An P, Cheng K, Sun C, Zhu X, Sun B. Decoration of cisplatin on 2D metal-organic frameworks for enhanced anticancer effects through highly increased reactive oxygen species generation. ACS Appl Mater Interfaces. 2018;10(37):30930. https://doi.org/10.1021/acsami.8b12800.

    Article  CAS  PubMed  Google Scholar 

  106. Liu Y, Howarth AJ, Vermeulen NA, Moon SY, Hupp JT, Farha OK. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord Chem Rev. 2017;346:101. https://doi.org/10.1016/j.ccr.2016.11.008.

    Article  CAS  Google Scholar 

  107. Islamoglu T, Chen Z, Wasson MC, Buru CT, Kirlikovali KO, Afrin U, Mian MR, Farha OK. Metal-organic frameworks against toxic chemicals. Chem Rev. 2020;120(16):8130. https://doi.org/10.1021/acs.chemrev.9b00828.

    Article  CAS  PubMed  Google Scholar 

  108. Nath I, Chakraborty J, Verpoort F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev. 2016;45(15):4127. https://doi.org/10.1039/c6cs00047a.

    Article  CAS  PubMed  Google Scholar 

  109. Ploskonka AM, DeCoste JB. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. J Hazard Mater. 2019;375:191. https://doi.org/10.1016/j.jhazmat.2019.04.044.

    Article  CAS  PubMed  Google Scholar 

  110. Katz MJ, Mondloch JE, Totten RK, Park JK, Nguyen ST, Farha OK, Hupp JT. Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. Angew Chem Int Ed Engl. 2014;53(2):497. https://doi.org/10.1002/anie.201307520.

    Article  CAS  PubMed  Google Scholar 

  111. Kirlikovali KO, Chen Z, Islamoglu T, Hupp JT, Farha OK. Zirconium-based metal-organic frameworks for the catalytic hydrolysis of organophosphorus nerve agents. ACS Appl Mater Interfaces. 2020;12(13):14702. https://doi.org/10.1021/acsami.9b20154.

    Article  CAS  PubMed  Google Scholar 

  112. Chen Z, Ma K, Mahle JJ, Wang H, Syed ZH, Atilgan A, Chen Y, Xin JH, Islamoglu T, Peterson GW, Farha OK. Integration of metal-organic frameworks on protective layers for destruction of nerve agents under relevant conditions. J Am Chem Soc. 2019;141(51):20016. https://doi.org/10.1021/jacs.9b11172.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 31901000 and 22022609), the Natural Science Foundation of Jiangsu Higher Education Institutes of China (No. 19KJA610003), the Postdoctoral Science Foundation of Jiangsu Province (No. 2019K152), and the Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Cui Ge.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, G., Bao, SX., Zhou, GX. et al. Activity regulation and applications of metal–organic framework-based nanozymes. Rare Met. 43, 900–914 (2024). https://doi.org/10.1007/s12598-023-02311-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02311-2

Keywords

Navigation