Skip to main content
Log in

Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, mesoporous silica materials (MSMs) with bimodal pore systems (namely, UVM-7), MCM-41 silica, and a commercial silica-based material were evaluated as solid-phase extraction (SPE) sorbents for the isolation of phospholipids (PLs) using phosphatidylcholine as a test compound. Morphological characterization (including TEM, surface, and size pore measurements) of these materials was carried out. The mechanism of interaction of the target analyte with the MSMs was also studied. With regard to the SPE process, several experimental parameters that affect the extraction performance (e.g., loading and elution solvent, breakthrough volume, loading capacity, and reusability) were investigated. The recommended protocol was applied to the extraction of PLs in human milk fat samples. The extracted PLs were then determined by hydrophilic interaction liquid chromatography (HILIC) using evaporative light scattering detection (ELSD). This work reports the first application of silica-based mesoporous materials to preconcentrate PLs in these complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  2. Luque R, Balu AM, Campelo JM, Gracia MD, Losada E, Pineda A, et al. Catalytic applications of mesoporous silica-based materials. Catalysis. 2012;24:253–80.

    Article  CAS  Google Scholar 

  3. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590–605.

    Article  CAS  PubMed  Google Scholar 

  4. Casado N, Pérez-Quintanilla D, Morante-Zarcero S, Sierra I. Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. TrAC-Trends Anal Chem. 2017;88:167–84.

    Article  CAS  Google Scholar 

  5. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548–52.

    Article  CAS  PubMed  Google Scholar 

  6. El Haskouri J, Ortiz de Zárate D, Guillem C, Latorre J, Caldés M, Beltrán A, et al. Silica-based powders and monoliths with bimodal pore systems. Chem Commun. 2002;4:330–1.

    Article  CAS  Google Scholar 

  7. Gibson LT. Mesosilica materials and organic pollutant adsorption: part B: removal from aqueous solution. Chem Soc Rev. 2014;43:5173–82.

    Article  CAS  PubMed  Google Scholar 

  8. Gibson LT. Mesosilica materials and organic pollutant adsorption: part A: removal from air. Chem Soc Rev. 2014;43:5163–72.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X-M, Du X-Z, Rao H-H, Lu X-Q. Determination of polycyclic aromatic hydrocarbons in water by a novel mesoporous-coated stainless steel wire microextraction combined with HPLC. J Sep Sci. 2010;33:3239–44.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng W, Ma H, Zhang L, Wang Y. Hierarchically imprinted mesoporous silica polymer: an efficient solid-phase extractant for bisphenol A. Talanta. 2014;120:255–61.

    Article  CAS  PubMed  Google Scholar 

  11. Huerta LJ, Amorós P, Beltrán-Porter D, Corberán VC. Selective oxidative activation of isobutane on a novel vanadium-substituted bimodal mesoporous oxide V-UVM-7. Catal Today. 2006;117:180–6.

    Article  CAS  Google Scholar 

  12. Descalzo AB, Marcos MD, Martínez-Máñez R, Soto J, Beltrán D, Amorós P. Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP. J Mater Chem. 2005;15:2721–31.

    Article  CAS  Google Scholar 

  13. Weller A, Carrasco-Correa EJ, Belenguer-Sapiña C, de los Reyes Mauri-Aucejo A, Amorós P, Herrero-Martínez JM. Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules. Microchim Acta. 2017;184:3799–808.

    Article  CAS  Google Scholar 

  14. Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv. 2005;23:203–59.

    Article  CAS  PubMed  Google Scholar 

  15. Parsons JG, Patton S. Two-dimensional thin-layer chromatography of polar lipids from milk and mammary tissue. J Lipid Res. 1967;8:696–8.

    CAS  PubMed  Google Scholar 

  16. Sánchez-Juanes F, Alonso JM, Zancada L, Hueso P. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. Int Dairy J. 2009;19:273–8.

    Article  CAS  Google Scholar 

  17. Maxwell RJ, Mondimore D, Tobias J. Rapid method for the quantitative extraction and simultaneous class separation of milk lipids. J Dairy Sci. 1986;69:321–5.

    Article  CAS  Google Scholar 

  18. Donato P, Cacciola F, Cichello F, Russo M, Dugo P, Mondello L. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J Chromatogr A. 2011;1218:6476–82.

    Article  CAS  PubMed  Google Scholar 

  19. Calvano CD, Jensen ON, Zambonin CG. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem. 2009;394:1453–61.

    Article  CAS  PubMed  Google Scholar 

  20. Shen Q, Cheung H-Y. TiO2/SiO2 core-shell composite-based sample preparation method for selective extraction of phospholipids from shrimp waste followed by hydrophilic interaction chromatography coupled with quadrupole time-of-flight/mass spectrometry analysis. J Agric Food Chem. 2014;62:8944–51.

    Article  CAS  PubMed  Google Scholar 

  21. Sinyaeva LA, Belanova NA, Karpov SI, Selemenev VF, Roessner F. Dynamics of the sorption of phosphatidylcholine by mesoporous composites based on MCM-41. Russ J Phys Chem A. 2016;90:2254–61.

    Article  CAS  Google Scholar 

  22. Sinyaeva LA, Karpov SI, Belanova NA, Roessner F, Selemenev VF. Characteristics of the mass transfer of phosphatidylcholine during its sorption on mesoporous composites based on MCM-41. Russ J Phys Chem A. 2015;89:2278–84.

    Article  CAS  Google Scholar 

  23. Sigma-Aldrich Supelclean™ LC-Si SPE tube. http://www.sigmaaldrich.com/catalog/product/supelco/57051?lang=es&region=ES. Accessed 6 Apr 2017.

  24. Morera Pons S, Castellote Bargalló AI, López Sabater MC. Evaluation by high-performance liquid chromatography of the hydrolysis of human milk triacylglycerides during storage at low temperatures. J Chromatogr A. 1998;823:467–74.

    Article  CAS  PubMed  Google Scholar 

  25. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.

    Article  CAS  PubMed  Google Scholar 

  26. Cabrera S, El Haskouri J, Guillem C, Latorre J, Beltrán-Porter A, Beltrán-Porter D, et al. Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci. 2000;2:405–20.

    Article  CAS  Google Scholar 

  27. El Haskouri J, Morales JM, Ortiz de Zárate D, Fernández L, Latorre J, Guillem C, et al. Nanoparticulated silicas with bimodal porosity: chemical control of the pore sizes. Inorg Chem. 2008;47:8267–77.

    Article  CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Sloane Stantley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;266:497–509.

    Google Scholar 

  29. Chen IS, Shen C-SJ, Sheppard AJ. Comparison of methylene chloride and chloroform for the extraction of fats from food products. J Am Oil Chem Soc. 1981;58:599–601.

    Article  CAS  Google Scholar 

  30. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. New York: Wiley; 1979.

    Google Scholar 

  31. Ten-Doménech I, Martínez-Pérez-Cejuela H, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Molecularly imprinted polymers for selective solid-phase extraction of phospholipids from human milk samples. Microchim Acta. 2017;184:3389–97.

    Article  CAS  Google Scholar 

  32. Manjula S, Kobayashi I, Subramanian R. Characterization of phospholipid reverse micelles in nonaqueous systems in relation to their rejection during membrane processing. Food Res Int. 2011;44:925–30.

    Article  CAS  Google Scholar 

  33. Giuffrida F, Cruz-Hernandez C, Flück B, Tavazzi I, Thakkar SK, Destaillats F, et al. Quantification of phospholipids classes in human milk. Lipids. 2013;48:1051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferraz TPL, Fiúza MC, Dos Santos MLA, Pontes De Carvalho L, Soares NM. Comparison of six methods for the extraction of lipids from serum in terms of effectiveness and protein preservation. J Biochem Biophys Methods. 2004;58:187–93.

    Article  CAS  PubMed  Google Scholar 

  35. Avalli A, Contarini G. Determination of phospholipids in dairy products by SPE/HPLC/ELSD. J Chromatogr A. 2005;1071:185–90.

    Article  CAS  PubMed  Google Scholar 

  36. Sigma-Aldrich (2016) SPE cartridge (tube) configuration guide. http://www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spe/tube-configuration-guide.printerview.html. Accessed 26 Sep 2016.

Download references

Funding

This study is supported by Project CTQ2014-52765-R (MINECO of Spain and FEDER), MAT2015-64139-C4-2-R (MEyC-Retos), and PROMETEO/2016/145 (Generalitat Valenciana). I. T-D thanks the MINECO for an FPU grant for PhD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Herrero-Martínez.

Ethics declarations

Informed consent

All individual participants received a complete description of the study and gave written informed consent before providing the milk samples. This study has been developed in accordance with the guidance given by the Ethics Committee of the University of Valencia.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 2327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Pérez-Cejuela, H., Ten-Doménech, I., El Haskouri, J. et al. Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Anal Bioanal Chem 410, 4847–4854 (2018). https://doi.org/10.1007/s00216-018-1121-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1121-8

Keywords

Navigation