Skip to main content
Log in

Electrospun of functionalized mesoporous UiO-66 as the selective coating of solid phase microextraction Arrow for the determination of nine alkylphenols

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A solid-phase microextraction (SPME) Arrow and high-performance liquid chromatography-UV detector (HPLC-UV, detection at 225 nm) based method was developed for the selective determination of nine alkylphenols (APs) in milk. The functionalized mesoporous UiO-66 (4-meso-UiO-66) was utilized as the new coating material, which was synthesized by post-modification of pore-expanded UiO-66-NH2 by an esterification reaction with 4-pentylbenzoic acid. It was fully characterized by X-ray photoelectron spectroscopy (XPS), fourier transformation infrared spectrometry, nitrogen sorption-desorption test, scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The characterization results showed the ester groups and benzene rings were introduced into the 4-meso-UiO-66, and the mesoporous structure was predominant in the 4-meso-UiO-66. The extraction mechanism of 4-meso-UiO-66 to APs is the synergistic effect of Zr-O electrostatic interaction and the size exclusion effect resulting from XPS, selectivity test, and nitrogen sorption-desorption test. The electrospinning technique was utilized to fabricate the 4-meso-UiO-66 coated SPME Arrow and polyacrylonitrile (PAN) was used as the adhesive. The mass rate of 4-meso-UiO-66 to PAN and the electrospinning time were evaluated. The extraction and desorption parameters were also studied. The linear range of this method was 0.2–1000 μg L–1 with a coefficient of determination greater than 0.9989 under the optimal conditions. The detection limits were 0.05–1 μg L–1, the inter-day and intra-day precision (RSD) were 2.8–11.5%, and the recovery was 83.6%–112%. The reusability study showed that the extraction performance of this new SPME Arrow could be maintained after 80 adsorption-desorption cycles. This method showed excellent applicability for the selective determination of APs in milk.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rani M, Marchesi C, Federici S, Rovelli G, Alessandri I, Vassalini I, Ducoli S, Borgese L, Zacco A, Bilo F, Bontempi E, Depero LE (2019) Miniaturized near-infrared (micronir) spectrometer in plastic waste sorting. Materials (Basel) 12(17):2740. https://doi.org/10.3390/ma12172740

    Article  CAS  PubMed  Google Scholar 

  2. Ragavan KV, Rastogi NK, Thakur MS (2013) Sensors and biosensors for analysis of bisphenol-a. TrAC Trends Anal Chem 52:248–260. https://doi.org/10.1016/j.trac.2013.09.006

    Article  CAS  Google Scholar 

  3. Gogoi A, Mazumder P, Tyagi VK, TusharaChaminda GG, An AK, Kumar M (2018) Occurrence and fate of emerging contaminants in water environment: a review. Groundw Sustain Dev 6:169–180. https://doi.org/10.1016/j.gsd.2017.12.009

    Article  Google Scholar 

  4. de Almeida W, Matei JC, Akiyama Kitamura RS, Gomes MP, Leme DM, Silva de Assis HC, Vicari T, Cestari MM (2023) Alkylphenols cause cytotoxicity and genotoxicity induced by oxidative stress in rtg-2 cell line. Chemosphere 313:137387. https://doi.org/10.1016/j.chemosphere.2022.137387

    Article  CAS  PubMed  Google Scholar 

  5. Palacios Colón L, Rascón AJ, Ballesteros E (2023) Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography−mass spectrometry. Food Control 146:109564. https://doi.org/10.1016/j.foodcont.2022.109564

    Article  CAS  Google Scholar 

  6. Borrull J, Colom A, Fabregas J, Borrull F, Pocurull E (2020) Liquid chromatography tandem mass spectrometry determination of 34 priority and emerging pollutants in water from the influent and effluent of a drinking water treatment plant. J Chromatogr A 1621:461090. https://doi.org/10.1016/j.chroma.2020.461090

    Article  CAS  PubMed  Google Scholar 

  7. He R, Wu X, Mu H, Chen L, Hu H, Wang J, Ren H, Wu B (2023) Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Res 243:120338. https://doi.org/10.1016/j.watres.2023.120338

    Article  CAS  PubMed  Google Scholar 

  8. Xie X, Ma X, Guo L, Fan Y, Zeng G, Zhang M, Li J (2019) Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J 357:56–65. https://doi.org/10.1016/j.cej.2018.09.080

    Article  CAS  Google Scholar 

  9. Qiao L, Sun R, Tao Y, Yan Y (2022) New low viscous hydrophobic deep eutectic solvents for the ultrasound-assisted dispersive liquid-liquid microextraction of endocrine-disrupting phenols in water, milk and beverage. J Chromatogr A 1662:462728. https://doi.org/10.1016/j.chroma.2021.462728

    Article  CAS  PubMed  Google Scholar 

  10. Azzouz A, Rascón AJ, Ballesteros E (2016) Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol a and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal 119:16–26. https://doi.org/10.1016/j.jpba.2015.11.024

    Article  CAS  PubMed  Google Scholar 

  11. Bian L, Li S, Ge X, Wang M, Li K, Wang X (2023) Determination of bisphenols, triclosan, and parabens in bottled water by solid-phase microextraction combined with gas chromatography-tandem mass spectrometry and assessment of the associated health risk. J Food Compost Anal 123:105548. https://doi.org/10.1016/j.jfca.2023.105548

    Article  CAS  Google Scholar 

  12. Vicente-Martínez Y, Caravaca M, Soto-Meca A (2020) Determination of very low concentration of bisphenol A in toys and baby pacifiers using dispersive liquid–liquid microextraction by in situ ionic liquid formation and high-performance liquid chromatography. Pharmaceuticals 13(10):301

    Article  PubMed  PubMed Central  Google Scholar 

  13. Helin A, Ronkko T, Parshintsev J, Hartonen K, Schilling B, Laubli T, Riekkola ML (2015) Solid phase microextraction arrow for the sampling of volatile amines in wastewater and atmosphere. J Chromatogr A 1426:56–63. https://doi.org/10.1016/j.chroma.2015.11.061

    Article  CAS  PubMed  Google Scholar 

  14. Ruiz-Jimenez J, Lan H, Leleev Y, Hartonen K, Riekkola ML (2020) Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction arrow and in-tube extraction. J Chromatogr A 1616:460825. https://doi.org/10.1016/j.chroma.2019.460825

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Wu Y, Bai H, Wen X, Zhou Q, Yuan Y, Liu Y, Chen C, Guo L (2021) Highly efficient adsorption and mechanism of alkylphenols on magnetic reduced graphene oxide. Chemosphere 283:131232. https://doi.org/10.1016/j.chemosphere.2021.131232

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Lou J, Yuan J, Xu J, Zhu R, Wang Q, Fan X (2021) Laccase immobilization on core-shell magnetic metal-organic framework microspheres for alkylphenol ethoxylate compound removal. J Environ Chem Eng 9(1):105000. https://doi.org/10.1016/j.jece.2020.105000

    Article  CAS  Google Scholar 

  17. Poliwoda A, Mościpan M, Wieczorek PP (2016) Application of molecular imprinted polymers for selective solid phase extraction of bisphenol a. Ecol Chem Eng S 23(4):651–664. https://doi.org/10.1515/eces-2016-0046

    Article  CAS  Google Scholar 

  18. Sukatis FF, Wee SY, Aris AZ (2022) Potential of biocompatible calcium-based metal-organic frameworks for the removal of endocrine-disrupting compounds in aqueous environments. Water Res 218:118406. https://doi.org/10.1016/j.watres.2022.118406

    Article  CAS  PubMed  Google Scholar 

  19. Molina MA, Habib NR, Díaz I, Sánchez-Sánchez M (2022) Surfactant-induced hierarchically porous MOF-based catalysts prepared under sustainable conditions and their ability to remove bisphenol A from aqueous solutions. Catal Today 394–396:117–124. https://doi.org/10.1016/j.cattod.2021.10.019

    Article  CAS  Google Scholar 

  20. Zhang Y, Yuan Z-L, Deng X-Y, Wei H-D, Wang W-L, Xu Z, Feng Y, Shi X (2022) Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem 386:132753. https://doi.org/10.1016/j.foodchem.2022.132753

    Article  CAS  PubMed  Google Scholar 

  21. Rezania S, Cho J, Derakhshan Nejad Z, Barghi A, Yadav KK, Ahmed EM, Cabral-Pinto MMS, Park J, Mehranzamir K (2021) Microporous metal-organic frameworks against endocrine-disruptor bisphenol A: parametric evaluation and optimization. Colloids Surf A Physicochem Eng Asp 626:127039. https://doi.org/10.1016/j.colsurfa.2021.127039

    Article  CAS  Google Scholar 

  22. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP (2016) Defect engineering: tuning the porosity and composition of the metal–organic framework uio-66 via modulated synthesis. Chem Mater 28(11):3749–3761. https://doi.org/10.1021/acs.chemmater.6b00602

    Article  CAS  Google Scholar 

  23. Lan H, Ronkko T, Parshintsev J, Hartonen K, Gan N, Sakeye M, Sarfraz J, Riekkola ML (2017) Modified zeolitic imidazolate framework-8 as solid-phase microextraction arrow coating for sampling of amines in wastewater and food samples followed by gas chromatography-mass spectrometry. J Chromatogr A 1486:76–85. https://doi.org/10.1016/j.chroma.2016.10.081

    Article  CAS  PubMed  Google Scholar 

  24. Wang P, Sun L, Ye J, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X (2021) Construction of crystal defect sites in uio-66 for adsorption of dimethyl phthalate and phthalic acid. Microporous Mesoporous Mater 312:110778. https://doi.org/10.1016/j.micromeso.2020.110778

    Article  CAS  Google Scholar 

  25. Feng L, Yuan S, Zhang LL, Tan K, Li JL, Kirchon A, Liu LM, Zhang P, Han Y, Chabal YJ, Zhou HC (2018) Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J Am Chem Soc 140(6):2363–2372. https://doi.org/10.1021/jacs.7b12916

    Article  CAS  PubMed  Google Scholar 

  26. Jose LM, Kuriakose S, Mathew T (2021) Development of photoresponsive zinc oxide nanoparticle - encapsulated lignin functionalized with 2-[(e)-(2-hydroxy naphthalen-1-yl) diazenyl] benzoic acid: a promising photoactive agent for antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 36:102479. https://doi.org/10.1016/j.pdpdt.2021.102479

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Shi J, Li Y (2021) Benzyne-mediated esterification reaction. Org Lett 23(18):7274–7278. https://doi.org/10.1021/acs.orglett.1c02702

    Article  CAS  PubMed  Google Scholar 

  28. Lan H, Holopainen J, Hartonen K, Jussila M, Ritala M, Riekkola ML (2019) Fully automated online dynamic in-tube extraction for continuous sampling of volatile organic compounds in air. Anal Chem 91(13):8507–8515. https://doi.org/10.1021/acs.analchem.9b01668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan Z, Wu M, Hu B, Yao M, Zhang L, Lu Q, Pang J (2018) Electrospun uio-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J Chromatogr A 1542:19–27. https://doi.org/10.1016/j.chroma.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  30. Lu M, Lan H, Cai Z, Wu Z, Sun Y, Tu M, Pan D (2022) Rapid solid phase microextraction of DNA using mesoporous metal-organic framework coating for pcr-based identification of meat adulteration. Microchim Acta 189(11):433. https://doi.org/10.1007/s00604-022-05531-y

    Article  CAS  Google Scholar 

  31. Wang H, Wang S, Wang S, Tang J, Chen Y, Zhang L (2022) Adenosine-functionalized uio-66-nh(2) to efficiently remove pb(ii) and cr(vi) from aqueous solution: thermodynamics, kinetics and isothermal adsorption. J Hazard Mater 425:127771. https://doi.org/10.1016/j.jhazmat.2021.127771

    Article  CAS  PubMed  Google Scholar 

  32. Lan H, Pan D, Sun Y, Guo Y, Wu Z (2016) Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk. Anal Chim Acta 937:53–60. https://doi.org/10.1016/j.aca.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  33. Chen M, Lan H, Pan D, Zhang T (2023) Hydrophobic mesoporous silica-coated solid-phase microextraction arrow system for the determination of six biogenic amines in pork and fish. Foods 12(3):12–578. https://doi.org/10.3390/foods12030578

    Article  CAS  Google Scholar 

  34. Lan H, Salmi LD, Rönkkö T, Parshintsev J, Jussila M, Hartonen K, Kemell M, Riekkola M-L (2018) Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow. Anal Chim Acta 1024:93–100. https://doi.org/10.1016/j.aca.2018.04.033

    Article  CAS  PubMed  Google Scholar 

  35. Fu L, Wang S, Lin G, Zhang L, Liu Q, Zhou H, Kang C, Wan S, Li H, Wen S (2019) Post-modification of uio-66-nh2 by resorcyl aldehyde for selective removal of pb(ii) in aqueous media. J Clean Prod 229:470–479. https://doi.org/10.1016/j.jclepro.2019.05.043

    Article  CAS  Google Scholar 

  36. Chen C, Chen D, Xie S, Quan H, Luo X, Guo L (2017) Adsorption behaviors of organic micropollutants on zirconium metal-organic framework uio-66: analysis of surface interactions. ACS Appl Mater Interfaces 9(46):41043–41054. https://doi.org/10.1021/acsami.7b13443

    Article  CAS  PubMed  Google Scholar 

  37. Yin C, Liu Q, Chen R, Liu J, Yu J, Song D, Wang J (2018) Defect-induced method for preparing hierarchical porous zr–mof materials for ultrafast and large-scale extraction of uranium from modified artificial seawater. Ind Eng Chem Res 58(3):1159–1166. https://doi.org/10.1021/acs.iecr.8b04034

    Article  CAS  Google Scholar 

  38. Liu X, Ji Y, Zhang H, Liu M (2008) Elimination of matrix effects in the determination of bisphenol A in milk by solid-phase microextraction–high-performance liquid chromatography. Food Addit Contam Part A 25(6):772–778. https://doi.org/10.1080/02652030701713921

    Article  CAS  Google Scholar 

  39. Reyes-Gallardo EM, Lucena R, Cárdenas S, Valcárcel M (2016) Dispersive micro-solid phase extraction of bisphenol a from milk using magnetic nylon 6 composite and its final determination by hplc-uv. Microchem J 124:751–756. https://doi.org/10.1016/j.microc.2015.10.025

    Article  CAS  Google Scholar 

  40. Shih H-K, Shu T-Y, Ponnusamy VK, Jen J-F (2015) A novel fatty-acid-based in-tube dispersive liquid–liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography–ultraviolet detection. Anal Chim Acta 854:70–77. https://doi.org/10.1016/j.aca.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  41. Du Z-D, Cui Y-Y, Yang C-X, Yan X-P (2020) Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples. Talanta 206:120179. https://doi.org/10.1016/j.talanta.2019.120179

    Article  CAS  PubMed  Google Scholar 

  42. Yang D, Wang Y, Li H, Yang Y (2020) Acid-base-governed deep eutectic solvent-based microextraction combined with magnetic solid-phase extraction for determination of phenolic compounds. Microchim Acta 187(2):124. https://doi.org/10.1007/s00604-020-4109-y

    Article  CAS  Google Scholar 

  43. Boti V, Kobothekra V, Albanis T, Konstantinou I (2021) QuEChERS-based methodology for the screening of alkylphenols and bisphenol a in dairy products using LC-LTQ/Orbitrap MS. Appl Sci 11(20):9358. https://doi.org/10.3390/app11209358

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 32102060), the Key R&D Program of Zhejiang (No. 2022C02028), Eyas Program Incubation Project of Zhejiang Provincial Administration for Market Regulation (No. CY2023216) and the Ningbo Public Welfare Science and Technology Project (2021S195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangzhen Lan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3279 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Zhu, X., Lan, H. et al. Electrospun of functionalized mesoporous UiO-66 as the selective coating of solid phase microextraction Arrow for the determination of nine alkylphenols. Microchim Acta 191, 188 (2024). https://doi.org/10.1007/s00604-024-06248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06248-w

Keywords

Navigation