Skip to main content
Log in

Adsorption Preconcentration of Phosphatidylcholine on Nanostructured Mesoporous Materials under Dynamic Conditions

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Prospects for using synthetic and modified nanostructured mesoporous adsorbents for the adsorption, preconcentration determination, and chromatographic separation of biologically active substances (BAS) are shown. The need in the account of the effect of the structure of nanocomposites on their adsorption capacity is noted. The structuredness of mesoporous materials such as MCM-41 and the high rate of delivery and removal of biologically active substances (adsorption–desorption) upon contact with the material increase the efficiency of chromatographic columns. Procedures for the preconcentration and separation of phospholipids on silicon-containing materials, such as MCM-41, are developed. The number of stages in the isolation, preconcentration, and determination of BAS was decreased by increasing the recovery of the target component by ordered composites based on MCM-41. Dynamic preconcentration of phosphatidylcholine on mesoporous adsorbents is described using the dynamic model for convex adsorption isotherms. An increased efficiency of adsorption preconcentration on nanostructured adsorbents is achieved through the more complete use of the adsorption capacity while reducing the loss of the analyte under dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: FIZMATLIT, 2003, p. 592.

    Google Scholar 

  2. Chu, B.S., Baharin, B.S., Che Man, Y.B., and Quek, S.Y., J. Food Eng., 2004, vol. 62, p. 105.

    Article  Google Scholar 

  3. Olieman, C., Sedlick, E., and Voskamp, D., J. Chromatogr. A, 1981, vol. 207, p. 421.

    Article  CAS  Google Scholar 

  4. Solid Phase Extraction Applications Guide and Bibliography. A Resourse for Sample Preparation Methods Development, McDonald, P.D. and Bouvier, E.S.P., Eds., Milford, MA: Waters, 1995.

  5. Filippov, O.A., Tikhomirova, T.I., Badun, G.A., and Tsizin, G.I., J. Phys. Chem. A, 2003, vol. 77, no. 6, p. 981.

    Google Scholar 

  6. Zolotov, Yu.A., Sorbtsionnoe kontsentrirovanie mikrokomponentov iz rastvorov. Primenenie v neorganicheskom analize (Adsorption Preconcentration of Trace Components from Solutions: Application in Inorganic Analysis), Moscow: Nauka, 2007, p. 320.

  7. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1970, p. 336.

  8. Venitsianov, E.V. and Rubinshtein, R.N., Dinamika sorbtsii iz zhidkikh sred (Dynamics of Adsorption from Liquid Media), Moscow: Nauka, 1983, p. 237.

  9. Dmitrienko, S.G., Kosyreva, O.A., Runov, V.K., and Zolotov, Yu.A., Mendeleev Commun., 1991, no. 2, p. 75.

  10. Zolotov, Yu.A., Ross. Khim. Zh., 2005, vol. 49, no. 2, p. 6.

    CAS  Google Scholar 

  11. Sinyaeva, L.A., Karpov, S.I., Belanova, N.A., Roessner, F., and Selemenev, V.F., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 12, p. 2278.

    Article  CAS  Google Scholar 

  12. Belousov, O.V., Parfenov, V.A., Solov’ev, L.A., and Kirik, S.D., RF Patent 2287485, Byull. Izobret., 2006, no. 32.

  13. Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  CAS  Google Scholar 

  14. Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  CAS  Google Scholar 

  15. Chen, J., Li, Q., Xu, R., and Xiao, F., Angew. Chem., Int. Ed. Engl., 1996, vol. 34, p. 2694.

    Article  Google Scholar 

  16. Liu, F., Wang, J., Li, L., Shao, Y., Xu, Z., and Shourong, Z., J. Chem. Eng. Data, 2009, vol. 54, p. 3043.

    Article  CAS  Google Scholar 

  17. Sinyaeva, L.A., Belanova, N.A., Karpov, S.I., and Selemenev, V.F., Sorbtsionnye Khromatogr. Protsessy, 2017, vol. 17, no. 2, p. 291.

    Google Scholar 

  18. Venitsianov, E.V., Kovalev, I.A., Tsizin, G.I., Teor. Prakt. Sorbtsionnykh Protsessov, 1998, vol. 23, p. 24.

    Google Scholar 

  19. Karpov, S.I. and Korabel’nikova, E.O., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 6, p. 1096.

    Article  CAS  Google Scholar 

  20. Yoschida, H., Kataoka, T., and Ruthven, D.M., Chem. Eng. Sci., 1984, vol. 39, no. 10, p. 1489.

    Article  Google Scholar 

  21. Sinyaeva, L.A., Belanova, N.A., Karpov, S.I., Selemenev, V.F., and Roessner, F., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 11, p. 2254.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of the Russian Federation in the framework of the State Task Assignment to Universities in the Field of Scientific Activity for 2017–2019, project no. 1.4539.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Belanova.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyaeva, L.A., Belanova, N.A., Karpov, S.I. et al. Adsorption Preconcentration of Phosphatidylcholine on Nanostructured Mesoporous Materials under Dynamic Conditions. J Anal Chem 73, 847–854 (2018). https://doi.org/10.1134/S1061934818090149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934818090149

Keywords:

Navigation