Skip to main content

Advertisement

Log in

MALDI matrices for low molecular weight compounds: an endless story?

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis.

An ideal Book of matrices for MALDI MS of small molecules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57(14):2935–9.

    Article  CAS  Google Scholar 

  2. Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 1984;88(20):4451–9.

    Article  CAS  Google Scholar 

  3. Krüger R, Anja Pfenninger IF, Glückmann M, Karas M. Analyte incorporation and ionization in matrix-assisted laser desorption/ionization visualized by pH indicator molecular probes. Anal Chem. 2001;73:5812–21.

    Article  CAS  PubMed  Google Scholar 

  4. Beavis RC, Chaudhary T, Chait BT. α-Cyano-4-hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectromtry. Org Mass Spectrom. 1992;27(2):156–8.

    Article  CAS  Google Scholar 

  5. Tang W, Nelson CM, Zhu L, Smith LM. Positive ion formation in the ultraviolet matrix-assisted laser desorption /ionization analysis of oligonucleotides by using 2,5-dihydroxybenzoic acid. J Am Soc Mass Spectrom. 1997;8(3):218–24.

    Article  CAS  Google Scholar 

  6. Smirnov IP, Zhu X, Taylor T, Huang Y, Ross P, Papayanopoulos IA, Martin SA, Pappin DJ. Suppression of α-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal Chem. 2004;76(10):2958–65.

    Article  CAS  PubMed  Google Scholar 

  7. Bergman N, Shevchenko D, Bergquist J. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry. Anal Bioanal Chem. 2014;406(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  8. Dreisewerd K. Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem. 2014;406(9/10):2261–78.

    Article  CAS  PubMed  Google Scholar 

  9. Abdelhamid HN. Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. TrAC - Trends Anal Chem. 2017;89:68–98.

    Article  CAS  Google Scholar 

  10. Shi CY, Deng CH. Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst. 2016;141(10):2816–26.

    Article  CAS  PubMed  Google Scholar 

  11. Lu M, Yang X, Yang Y, Qin P, Wu X, Cai Z. Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials. 2017;7(4):87–107.

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhang X, Niu J, Lu M, Cai Z. Recent advances of nanomaterials assisted negative ion laser desorption/ionization-time-of-flight mass spectrometry in the analysis of small molecules. Chinese J Chromatogr. 2016;34(11):1017.

    Article  CAS  Google Scholar 

  13. Wang J, Liu Q, Liang Y, Jiang G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem. 2016;408(11):2861–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kiss A, Hopfgartner G. Laser-based methods for the analysis of low molecular weight compounds in biological matrices. Methods. 2016;104:142–53.

    Article  CAS  PubMed  Google Scholar 

  15. Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon. Nature. 1999;399(6733):243–6.

    Article  CAS  PubMed  Google Scholar 

  16. Baker TC, Han J, Borchers CH. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr Opin Biotechnol. 2017;43:62–9.

    Article  CAS  PubMed  Google Scholar 

  17. Trim PJ, Snel MF. Small molecule MALDI MS imaging: Current technologies and future challenges. Methods. 2016;104:127–41.

    Article  CAS  PubMed  Google Scholar 

  18. Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry — From bench to bedside. Biochim Biophys Acta – Proteins Proteomics. 2017;1865(7):776–83.

    Article  CAS  Google Scholar 

  19. Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery. J Proteomics. 2014;107:71–82.

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Giese RW. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A. 2017;1486:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hillenkamp F, Peter-Katalinić J. MALDI MS: a practical guide to instrumentation, methods and applications, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.

    Book  Google Scholar 

  22. Cramer R, editor. Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry, Springer International Publishing Switzerland; 2016.

  23. Cole RB. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: Wiley; 2010.

    Book  Google Scholar 

  24. Shah HN, Gharbia S. MALDI-TOF and tandem MS for clinical microbiology. 1st ed. Wiley, Chichester, West Sussex; 2017. 

  25. Hosseini S, Martínez Chapa SO. Fundamentals of MALDI-ToF-MS analysis : applications in bio-diagnosis, tissue engineering, and drug delivery. Singapore: Springer; 2017.

    Book  Google Scholar 

  26. Knochenmuss R. The coupled chemical and physical dynamics model of MALDI. Annu Rev Anal Chem. 2016;9(1):365–85.

    Article  Google Scholar 

  27. Moon JH, Yoon S, Bae YJ, Kim MS. Formation of gas-phase peptide ions and their dissociation in MALDI: Insights from kinetic and ion yield studies. Mass Spectrom Rev. 2015;34(2):94–115.

    Article  CAS  PubMed  Google Scholar 

  28. Knochenmuss R. Ion formation mechanisms in UV-MALDI. Analyst. 2006;131(9):966.

    Article  CAS  PubMed  Google Scholar 

  29. Karas M, Krüger R. Ion formation in MALDI: the cluster ionization mechanism. Chem Rev. 2003;103:427–40.

    Article  CAS  PubMed  Google Scholar 

  30. Knochenmuss A, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103:441–52.

    Article  CAS  PubMed  Google Scholar 

  31. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395–426.

    Article  CAS  PubMed  Google Scholar 

  32. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17(5):337–66.

    Article  CAS  Google Scholar 

  33. Mirabelli MF, Zenobi R. Observing proton transfer reactions inside the maldi plume: experimental and theoretical insight into MALDI gas-phase reactions. J Am Soc Mass Spectrom. 2017;28(8):1676–86.

    Article  CAS  PubMed  Google Scholar 

  34. Niehaus M, Schnapp A, Koch A, Soltwisch J, Dreisewerd K. New insights into the wavelength dependence of MALDI mass spectrometry. Anal Chem. 2017;89(14):7734–41.

    Article  CAS  PubMed  Google Scholar 

  35. Alonso E, Zenobi R. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI. Phys Chem Chem Phys. 2016;18(29):19574–87.

    Article  CAS  PubMed  Google Scholar 

  36. Jaskolla TW, Karas M. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom. 2011;22(6):976–88.

    Article  CAS  PubMed  Google Scholar 

  37. Karas M, Gluckmann M, Schafer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom. 2000;35(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  38. Persike M, Zimmermann M, Klein J, Karas M. Quantitative determination of acetylcholine and choline in microdialysis samples by MALDI-TOF MS. Anal Chem. 2010;82(3):922–9.

    Article  CAS  PubMed  Google Scholar 

  39. Persike M, Karas M. Rapid simultaneous quantitative determination of different small pharmaceutical drugs using a conventional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system. Rapid Commun Mass Spectrom. 2009;23(22):3555–62.

    Article  CAS  PubMed  Google Scholar 

  40. Mahale V, Singh A, Phadke GS, Ghanate AD, Oulkar DP, Banerjee K, Panchagnula V. Determination of triazines and triazoles in grapes using atmospheric pressure matrix-assisted laser desorption/ionization high-resolution mass spectrometry. J AOAC Int. 2017;100(3):640–6.

    Article  CAS  PubMed  Google Scholar 

  41. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: a methodological approach. Anal Biochem. 1999;267(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  42. Porcari AM, Fernandes GD, Belaz KA, Schwab NV, Santos VG, Alberici RM, Varvara Gromova A, Eberlin MN, Lebedev AT, Tata A. Analytical methods high throughput MS techniques for caviar lipidomics high throughput MS techniques for caviar lipidomics. Anal Methods. 2014;6(8):2413–792.

    Article  CAS  Google Scholar 

  43. McCombie G, Knochenmuss R. Small-Molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal Chem. 2004;76(17):4990–7.

    Article  CAS  PubMed  Google Scholar 

  44. Grant DC, Helleur RJ. Surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Rapid Commun Mass Spectrom. 2007;21(6):837–45.

    Article  CAS  PubMed  Google Scholar 

  45. Kosevich M V, Boryak OA, Chagovets VV, Pashynska VA, Orlov VV, Stepanian SG, Shelkovsky VS. “Wet chemistry” and crystallochemistry reasons for acidic matrix suppression by quaternary ammonium salts under matrix-assisted laser desorption/ionization conditions. Rapid Commun Mass Spectrom. 2007;21(11):1813–9.

    Article  CAS  PubMed  Google Scholar 

  46. Guo Z, Zhang Q, Zou H, Guo B, Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem. 2002;74:1637–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lou X, van Dongen JLJ, Vekemans JAJM, Meijer EW. Matrix suppression and analyte suppression effects of quaternary ammonium salts in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: an investigation of suppression mechanism. Rapid Commun Mass Spectrom. 2009;23(19):3077–82.

    Article  CAS  PubMed  Google Scholar 

  48. Lou X, van Dongen JLJ, Milroy L-G, Meijer EW. Generation of gas-phase ions from charged clusters: an important ionization step causing suppression of matrix and analyte ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(24):2628–34.

    Article  CAS  PubMed  Google Scholar 

  49. Popkova Y, Schiller J. Addition of CsCl reduces ion suppression effects in the matrix-assisted laser desorption/ionization mass spectra of triacylglycerol/phosphatidylcholine mixtures and adipose tissue extracts. Rapid Commun Mass Spectrom. 2017;31(5):411–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lin Y-S, Chen Y-C. Laser desorption/ionization time-of-flight mass spectrometry on sol−gel-derived 2,5-dihydroxybenzoic acid film. Anal Chem. 2002;74:5793–8.

    Article  CAS  PubMed  Google Scholar 

  51. Yonezawa T, Asano T, Fujino T, Nishihara H. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds. Chem Phys. 2013;419:17–22.

    Article  CAS  Google Scholar 

  52. Suzuki J, Sato A, Yamamoto R, Asano T, Shimosato T SH, Kondo J, Yamashita KI, Hashimoto K FT. Matrix-assisted laser desorption ionization using lithium-substituted mordenite surface. Chem Phys Lett. 2012;546:159–63.

    Article  CAS  Google Scholar 

  53. Jaskolla TW, Onischke K, Schiller J. 2,5-Dihydroxybenzoic acid salts for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric lipid analysis: simplified spectra interpretation and insights into gas-phase fragmentation. Rapid Commun Mass Spectrom. 2014;28:1353–63.

    Article  CAS  PubMed  Google Scholar 

  54. Cvacka J, Svatos A. Matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2,5-dihydroxybenzoate matrix. Rapid Commun Mass Spectrom. 2003;17(19):2203–7.

    Article  CAS  PubMed  Google Scholar 

  55. Horká P, Vrkoslav V, Hanus R, Pecková K, Cvačka J. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters. J Mass Spectrom. 2014;49(7):628–38.

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom. 2003;38(7):699–708.

    Article  CAS  PubMed  Google Scholar 

  57. Gemperline E, Rawson S, Li L. Optimization and comparison of multiple MALDI matrix application methods for small molecule mass spectrometric imaging. Anal Chem. 2014;86:10030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo S, Wang Y, Zhou D, Li Z. Electric field-assisted matrix coating method enhances the detection of small molecule metabolites for mass spectrometry imaging. Anal Chem. 2015;87:5860–5.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X, Han, J, Hardie, DB, Yang, J, Pan, J, Borchers C. Metabolomic profiling of prostate cancer by matrix assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry imaging using matrix coating assisted by an electric field (MCAEF). Biochim Biophys Acta – Proteins Proteomics. 2017;1865(7):755–67.

    Article  CAS  Google Scholar 

  60. Kudina O, Eral B, Mugele F. E-MALDI: an electrowetting-enhanced drop drying method for MALDI mass spectrometry. Anal Chem. 2016;88(9):4669–75.

    Article  CAS  PubMed  Google Scholar 

  61. Malys BJ, Owens KG. Improving the analyte ion signal in matrix-assisted laser desorption/ionization imaging mass spectrometry via electrospray deposition by enhancing incorporation of the analyte in the matrix. Rapid Commun Mass Spectrom. 2017;31(9):804–12.

    Article  CAS  PubMed  Google Scholar 

  62. Li S, Zhang Y, Liu J, Han J, Guan M, Yang H, Lin Y, Xiong S, Zhao Z. Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI. Sci Rep. 2016;6:37903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korenaga A, Chen F, Li H, Uchiyama K, Lin J-M. Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta. 2017;162:474–8.

    Article  CAS  PubMed  Google Scholar 

  64. Phelps MS, Sturtevant D, Chapman KD, Verbeck GF. Nanomanipulation-Coupled matrix-assisted laser desorption/ ionization-direct organelle mass spectrometry: a technique for the detailed analysis of single organelles. J Am Soc Mass Spectrom. 2016;27(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  65. Stoeckli M, Staab D, Wetzel M, Brechbuehl M. iMatrixSpray: a free and open source sample preparation device for mass spectrometric imaging. Chim Int J Chem. 2014;68(3):146–9.

    Article  CAS  Google Scholar 

  66. Stoeckli M, Staab D. Reproducible matrix deposition for MALDI MSI based on open-source software and hardware. J Am Soc Mass Spectrom. 2015;26(6):911–4.

    Article  CAS  PubMed  Google Scholar 

  67. Trimpin S, Keune S, Räder HJ, Müllen K. Solvent-free MALDI-MS: developmental improvements in the reliability and the potential of MALDI in the analysis of synthetic polymers and giant organic molecules. J Am Soc Mass Spectrom. 2006;17(5):661–71.

    Article  CAS  PubMed  Google Scholar 

  68. Chen S, Chen L, Wang J, Hou J, He Q, Liu J, Wang J, Xiong S, Yang G, Nie Z. 2,3,4,5-Tetrakis(3′,4′-dihydroxylphenyl)thiophene: a new matrix for the selective analysis of low molecular weight amines and direct determination of creatinine in urine by MALDI-TOF MS. Anal Chem. 2012;84:10291–7.

    Article  CAS  PubMed  Google Scholar 

  69. Ayorinde FO, Hambright P, Porter TN, Keith QL. Use of meso- tetrakis(pentafluorophenyl)porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1999;13(24):2474–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ayorinde FO, Garvin K, Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(7):608–15.

    Article  CAS  PubMed  Google Scholar 

  71. Ayorinde FO, Bezabeh DZ, Delves IG. Preliminary investigation of the simultaneous detection of sugars, ascorbic acid, citric acid, and sodium benzoate in non-alcoholic beverages by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(15):1735–42.

    Article  CAS  PubMed  Google Scholar 

  72. van Kampen JJA, Luider TM, Ruttink PJA, Burgers PC. Metal ion attachment to the matrix meso-tetrakis(pentafluorophenyl)porphyrin, related matrices and analytes: an experimental and theoretical study. J Mass Spectrom. 2009;44(11):1556–64.

    Article  CAS  PubMed  Google Scholar 

  73. Porta T, Grivet C, Knochenmuss R, Varesio E, Hopfgartner G. Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry. J Mass Spectrom. 2011;46:144–52.

    Article  CAS  PubMed  Google Scholar 

  74. Gao X, Bi X, Wei J, Peng Z, Liu H, Jiang Y, Wei W, Cai Z. N-phosphorylation labeling for analysis of 20 natural amino acids and small peptides by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 2013;138:2632–9.

    Article  CAS  PubMed  Google Scholar 

  75. Lee PJ, Weibin Chen A, Gebler JC. Qualitative and quantitative analysis of small amine molecules by MALDI-TOF mass spectrometry through charge derivatization. Anal Chem. 2004;76:4888–93.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Hornshaw M, Alvelius G, Bodin K, Liu S, Sjövall J, Griffiths WJ. Matrix-assisted laser desorption/ionization high-energy collision-induced dissociation of steroids: analysis of oxysterols in rat brain. Anal Chem. 2006;78:164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Galesio M, Rial-Otero R, Capelo-Martínez J-L. Comparative study of matrices for their use in the rapid screening of anabolic steroids by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(12):1783–91.

    Article  CAS  PubMed  Google Scholar 

  78. Gouw JW, Burgers PC, Trikoupis MA, Terlouw JK. Derivatization of small oligosaccharides prior to analysis by matrix-assisted laser desorption/ionization using glycidyltrimethylammonium chloride and Girard’s reagent T. Rapid Commun Mass Spectrom. 2002;16(10):905–12.

    Article  CAS  PubMed  Google Scholar 

  79. Hailat I, Helleur RJ. Direct analysis of sterols by derivatization matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  80. Cai Y, Zhang Y, Yang P, Lu H. Improved analysis of oligosaccharides for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using aminopyrazine as a derivatization reagent and a co-matrix. Analyst. 2013;138:6270–6.

    Article  CAS  PubMed  Google Scholar 

  81. Rohmer M, Meyer B, Mank M, Stahl B, Bahr U, Karas M. 3-Aminoquinoline acting as matrix and derivatizing agent for MALDI MS analysis of oligosaccharides. Anal Chem. 2010;82(9):3719–26.

    Article  CAS  PubMed  Google Scholar 

  82. Kaneshiro K, Fukuyama Y, Iwamoto S, Sekiya S, Tanaka K. Highly sensitive MALDI analyses of glycans by a new aminoquinoline-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix. Anal Chem. 2011;15:3663–7.

    Article  CAS  Google Scholar 

  83. Jaskolla TW, Lehmann W-D, Karas M. 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc Natl Acad Sci USA. 2008;105(34):12200–5.

    Article  PubMed  Google Scholar 

  84. Soltwisch J, Jaskolla TW, Hillenkamp F, Karas M, Dreisewerd K. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes. Anal Chem. 2012;84(15):6567–76.

    Article  CAS  PubMed  Google Scholar 

  85. van der Werf ID, Calvano CD, Germinario G, Cataldi TRI, Sabbatini L. Chemical characterization of medieval illuminated parchment scrolls. Microchem J. 2017;134:146–53.

    Article  CAS  Google Scholar 

  86. Calvano CD, Ventura G, Palmisano F, Cataldi TRI. 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). J Mass Spectrom. 2016;51:841–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ventura G, Arnesano F, Calvano CD, Palmisano F, Cataldi TRI. Cyanocobalamin conjugates of cisplatin and diaminocyclohexane-platinum(II): matrix-assisted laser desorption ionization mass spectrometry characterization using 4-chloro-α-cyanocinnamic acid as the matrix. RSC Adv. 2017; 7(85):53658–666.

    Article  CAS  Google Scholar 

  88. Fülöp A, Porada MB, Marsching C, Blott H, Meyer B, Tambe S, Sandhoff R, Junker H-D, Hopf C. Alkylated dihydroxybenzoic acid as a MALDI matrix additive for hydrophobic peptide analysis. Anal Chem. 2012;84(9):4237–43.

    Article  CAS  Google Scholar 

  89. Fukuyama Y, Tanimura R, Maeda K, Watanabe M, Kawabata S-I, Iwamoto S, Izumi S, Tanaka K. Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom. 2014;28(5):403–12.

    Article  CAS  Google Scholar 

  90. Stoyanovsky DA, Sparvero LJ, Amoscato AA, He RR, Watkins S, Pitt BR, Bayir H, Kagan VE. Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom. 2014;28(5):403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tambe S, Blott H, Fülöp A, Spang N, Flottmann D, Bräse S, Hopf C, Junker HD. Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection. Anal Bioanal Chem. 2017;409:1569–80.

    Article  CAS  PubMed  Google Scholar 

  92. Salum ML, Giudicessi SL, Schmidt De León T, Camperi SA, Erra-Balsells R. Application of Z-sinapinic matrix in peptide MALDI-MS analysis. J Mass Spectrom. 2017;52(3):182–6.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang LK Gross ML. Location of abasic sites in oligodeoxynucleotides by tandem mass spectrometry and by a chemical cleavage initiated by an unusual reaction of the ODN with MALDI matrix. J Am Soc Mass Spectrom. 2002;13(12):1418–26.

    Article  CAS  PubMed  Google Scholar 

  94. Brombacher S, Owen SJ, Volmer DA. Automated coupling of capillary-HPLC to matrix-assisted laser desorption/ionization mass spectrometry for the analysis of small molecules utilizing a reactive matrix. Anal Bioanal Chem. 2003;376(6):773–9.

    Article  CAS  PubMed  Google Scholar 

  95. Vogel M, Büldt A, Karst U. Hydrazine reagents as derivatizing agents in environmental analysis--a critical review. Fresenius J Anal Chem. 2000;366(8):781–91.

    Article  CAS  PubMed  Google Scholar 

  96. Flinders B, Morrell J, Marshall PS, Ranshaw LE, Clench MR. The use of hydrazine-based derivatization reagents for improved sensitivity and detection of carbonyl containing compounds using MALDI-MSI. Anal Bioanal Chem. 2015;407(8):2085–94.

    Article  CAS  PubMed  Google Scholar 

  97. Teuber K, Fedorova M, Hoffmann R, Schiller J. 2,4-Dinitrophenylhydrazine as a New Reactive Matrix to Analyze Oxidized Phospholipids by MALDI-TOF Mass Spectrometry. Anal Lett. 2012;45(9):968–76.

    Article  CAS  Google Scholar 

  98. Shigeri Y, Ikeda S, Yasuda A, Ando M, Sato H, Kinumi T. Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes. J Mass Spectrom. 2014;49(8):742–49.

    Article  CAS  PubMed  Google Scholar 

  99. Shigeri Y, Kamimura T, Ando M, Uegaki K, Sato H, Tani F, Arakawa R, Kinumi T. 2-Hydrazinoquinoline: a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry to detect gaseous carbonyl compounds. Eur J Mass Spectrom. 2016;22(2):83.

    Article  CAS  Google Scholar 

  100. Shariatgorji M, Nilsson A, Källback P, Karlsson O, Zhang X, Svenningsson P, Andren PE. Pyrylium Salts as Reactive Matrices for MALDI-MS Imaging of Biologically Active Primary Amines. J Am Soc Mass Spectrom. 2015;26(6):934–939.

    Article  CAS  PubMed  Google Scholar 

  101. Zaikin V, Borisov R, Polovkov N, Slyundina M. Reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry of primary amines. Eur J Mass Spectrom. 2015;21(3):403–11.

    Article  CAS  Google Scholar 

  102. Tholey A, Wittmann C, Kang M-J, Bungert D, Hollemeyer K, Heinzle E. Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 2002;37(9):963–973.

    Article  CAS  PubMed  Google Scholar 

  103. Jiang K, Aloor A, Qu J, Xiao C, Wu Z, Ma C, Zhang L, Wang PG. Rapid and sensitive MALDI MS analysis of oligosaccharides by using 2-hydrazinopyrimidine as a derivative reagent and co-matrix. Anal Bioanal Chem. 2017;409(2):421–9.

    Article  CAS  PubMed  Google Scholar 

  104. Addy PS, Bhattacharya A, Mandal SM, Basak A. Label-assisted laser desorption/ionization mass spectrometry (LA-LDI-MS): an emerging technique for rapid detection of ubiquitous cis-1,2-diol functionality. RSC Adv. 2014;4(87):46555–60.

    Article  CAS  Google Scholar 

  105. Monopoli A, Calvano CD, Nacci A, Palmisano F. Boronic acid chemistry in MALDI MS: a step forward in designing a reactive matrix with molecular recognition capabilities. Chem Commun 2014;50:4322–4.

    Article  CAS  Google Scholar 

  106. Asakawa D, Osaka I. Direct MALDI-MS analysis of the disulfide bonds in peptide using thiosalicylic acid as a reactive matrix. J Mass Spectrom. 2017;52(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  107. Chendo C, Phan TNT, Marque SRA, Gigmes DLC. Mass spectrometry of nitroxide-terminated poly(4-vinylpyridine): A case of unwanted reactive MALDI. Int J Mass Spectrom. 2016;405:50–8.

    Article  CAS  Google Scholar 

  108. Vermillion-Salsbury RL, Hercules DM. 9-Aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom. 2002;16(16):1575–81.

    Article  CAS  Google Scholar 

  109. Dashtiev M, Wäfler E, Röhling U, Gorshkov M, Zenobi R. Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization. Int J Mass Spectrom. 2007;268(2–3):122–30.

    Article  CAS  Google Scholar 

  110. Shroff R, Muck A, Svatoš A. Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(20):3295–300.

    Article  CAS  PubMed  Google Scholar 

  111. Mims D, Hercules D. Quantification of bile acids directly from urine by MALDI–TOF–MS. Anal Bioanal Chem. 2003;375(5):609–16.

    Article  CAS  PubMed  Google Scholar 

  112. Mims D, Hercules D. Quantification of bile acids directly from plasma by MALDI-TOF-MS. Anal Bioanal Chem. 2004;378(5):1322–26.

    Article  CAS  PubMed  Google Scholar 

  113. Becher J, Muck A, Mithöfer A, Svatoš A, Boland W. Negative ion mode matrix-assisted laser desorption/ionisation time-of-flight mass spectrometric analysis of oligosaccharides using halide adducts and 9-aminoacridine matrix. Rapid Commun Mass Spectrom. 2008;22:1153–8.

    Article  CAS  PubMed  Google Scholar 

  114. Fuchs B, Bischoff A, Sü R, Teuber K, Schürenberg M, Suckau D, Schiller J. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures: A negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example. Anal Bioanal Chem. 2009;395:2479–87.

    Article  CAS  PubMed  Google Scholar 

  115. Calvano CD, Italiano F, Catucci L, Agostiano A, Cataldi TRI, Palmisano F, Trotta M. The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. BioMetals 2014;27(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  116. Vaidyanathan S, Goodacre R. Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun Mass Spectrom. 2007;21(13):2072–78.

    Article  CAS  PubMed  Google Scholar 

  117. Edwards JL, Kennedy RT. Metabolomic Analysis of Eukaryotic Tissue and Prokaryotes Using Negative Mode MALDI Time-of-Flight Mass Spectrometry. Anal Chem. 2005;77(7):2201–09.

    Article  CAS  PubMed  Google Scholar 

  118. Teearu A, Vahur S, Rodima T, Herodes K, Bonrath W, Netscher T, Tshepelevitsh S, Trummal A, Lõkov M, Leito I. Method development for the analysis of resinous materials with MALDI-FT-ICR-MS: novel internal standards and a new matrix material for negative ion mode. J Mass Spectrom. 2017;52(9):603–17.

    Article  CAS  PubMed  Google Scholar 

  119. Scott AJ, Flinders B, Cappell J, Liang T, Pelc RS, Tran B, Kilgour DPA, Heeren RMA, Goodlett DR, Ernst RK. Norharmane matrix enhances detection of endotoxin by MALDI-MS for simultaneous profiling of pathogen, host and vector systems. Pathog Dis. 2016;74(8):ftw097.

    Article  CAS  Google Scholar 

  120. Teuber K, Schiller J, Fuchs B, Karas M, Jaskolla TW. Significant sensitivity improvements by matrix optimization: a MALDI-TOF mass spectrometric study of lipids from hen egg yolk. Chem Phys Lipids. 2010;163(6):552–60.

    Article  CAS  PubMed  Google Scholar 

  121. Chen R, Chen S, Xiong C, Ding X, Wu CC, Chang HC, Xiong S, Nie Z. N-(1-naphthyl) ethylenediamine dinitrate: A new matrix for negative ion MALDI-TOF MS analysis of small molecules. J Am Soc Mass Spectrom. 2012;49:737–41.

    Google Scholar 

  122. Korte AR, Lee YJ. MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN). J Mass Spectrom. 2014;49(8):737–41.

    Article  CAS  PubMed  Google Scholar 

  123. Garate J, Fernández R, Lage S, Bestard-Escalas J, Lopez DH, Reigada R, Khorrami S, Ginard D, Reyes J, Amengual I, Barceló-Coblijn G, Fernández JA. Imaging mass spectrometry increased resolution using 2-mercaptobenzothiazole and 2,5-diaminonaphtalene matrices: application to lipid distribution in human colon. Anal Bioanal Chem. 2015;407(16):4697–708.

    Article  CAS  PubMed  Google Scholar 

  124. Wang X, Han J, Pan J, Borchers CH. Comprehensive Imaging of Porcine Adrenal Gland Lipids by MALDI-FTMS Using Quercetin as a Matrix. Anal Chem. 2014;86(1):638–46.

    Article  CAS  PubMed  Google Scholar 

  125. Dong W, Shen Q, Baibado JT, Liang Y, Wang P, Huang Y, Zhang Z, Wang Y, Cheung HY. Phospholipid analyses by MALDI-TOF/TOF mass spectrometry using 1,5-diaminonaphthalene as matrix. Int J Mass Spectrom. 2013;343–344:15–22.

    Article  CAS  Google Scholar 

  126. Liu H, Chen R, Wang J, Chen S, Xiong C, Wang J, Hou J, He Q, Zhang N, Nie Z, Mao L. 1,5-diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia. Anal Chem. 2014;86:10114–21.

    Article  CAS  PubMed  Google Scholar 

  127. Molin L, Seraglia R, Dani FR, Moneti G, Traldi P. The double nature of 1,5-diaminonaphthalene as matrix-assisted laser desorption/ionization matrix: some experimental evidence of the protonation and reduction mechanisms. Rapid Commun Mass Spectrom. 2011;25(20):3091–96.

    Article  CAS  PubMed  Google Scholar 

  128. Fukuyama Y, Izumi S, Tanaka K. 3-Hydroxy-4-nitrobenzoic Acid as a MALDI Matrix for In-Source Decay. Anal Chem. 2016;88(16):8058–63.

    Article  CAS  PubMed  Google Scholar 

  129. He Q, Chen S, Wang J, Hou J, Wang J, Xiong S, Nie Z. 1-Naphthylhydrazine hydrochloride: A new matrix for the quantification of glucose and homogentisic acid in real samples by MALDI-TOF MS. Clin Chim Acta 2013;420:94–98.

    Article  CAS  PubMed  Google Scholar 

  130. Lorkiewicz P, Yappert MC. 2-(2-Aminoethylamino)-5-nitropyridine as a basic matrix for negative-mode matrix-assisted laser desorption/ionization analysis of phospholipids. J Mass Spectrom. 2009;44:137–43.

    Article  CAS  PubMed  Google Scholar 

  131. Nguyen H-N, Tanaka M, Komabayashi G, Matsui T. The photobase generator nifedipine as a novel matrix for the detection of polyphenols in matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 2016;51(10):938–46.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang Y, Wang Y, Guo S, Guo Y, Liu H, Li Z. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta. 2013;794:82–9.

    Article  CAS  PubMed  Google Scholar 

  133. Hsieh C-C, Guo JY, Hung S-U, Chen R, Nie Z, Chang H-C, Wu C-C. Quantitative analysis of oligosaccharides derived from sulfated glycosaminoglycans by nanodiamond-based affinity purification and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2013;85(9):4342–9.

    Article  CAS  PubMed  Google Scholar 

  134. Alder RW, Bowman PS, Steele WRS, Winterman DR. The remarkable basicity of 1,8-bis(dimethylamino)naphthalene. Chem Commun 1968;(13):723–4.

    Google Scholar 

  135. Shroff R, Svatos A. Proton sponge: a novel and versatile MALDI matrix for the analysis of metabolites using mass spectrometry. Anal Chem. 2009;81:7954–9.

    Article  CAS  PubMed  Google Scholar 

  136. Shroff R, Rulísek L, Doubsky J, Svatos A. Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci USA. 2009;106(25):10092–6.

    Article  PubMed  Google Scholar 

  137. Calvano CD, Zambonin CG, Palmisano F. Lipid fingerprinting of Gram-positive lactobacilli by intact cells matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge based matrix. Rapid Commun Mass Spectrom. 2011;25(12):1757–64.

    Article  CAS  PubMed  Google Scholar 

  138. Cao D, Wang Z, Han C, Cui L, Hu M, Wu J, Liu Y, Cai Y, Wang H, Kang Y. Quantitative detection of trace perfluorinated compounds in environmental water samples by matrix-assisted laser desorption/ionization-time of flight mass spectrometry with 1,8-bis(tetramethylguanidino)-naphthalene as matrix. Talanta. 2011;85(1):345–52.

    Article  CAS  PubMed  Google Scholar 

  139. Napagoda M, Rulíšek L, Jančařík A, Klívar J, Šámal M, Stará IG, Starý I, Šolínová V, Kašička V, Svatoš A. Azahelicene superbases as MAILD matrices for acidic analytes. ChemplusChem. 2013;78(9):937–42.

    Article  CAS  Google Scholar 

  140. Weißflog J, Svatoš A. 1,8-Di(piperidinyl)-naphthalene – rationally designed MAILD/MALDI matrix for metabolomics and imaging mass spectrometry. RSC Adv. 2016;6(79):75073–81.

    Article  CAS  Google Scholar 

  141. Giampà M, Lissel MB, Patschkowski T, Fuchser J, Hans VH, Gembruch O, Bednarz H, Niehaus K. Maleic anhydride proton sponge as a novel MALDI matrix for the visualization of small molecules (<250 m/z) in brain tumors by routine MALDI ToF imaging mass spectrometry. Chem Commun. 2016;52(63):9801–4.

    Article  CAS  Google Scholar 

  142. Swor CD, Zakharov LN, Tyler DR. A colorimetric proton sponge. J. Org Chem. 2010;75(20):6977–9.

    Article  CAS  PubMed  Google Scholar 

  143. Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J. Superbasic alkyl-substituted bisphosphazene proton sponges: a new class of deprotonating matrices for negative ion matrix-assisted ionization/laser desorption mass spectrometry of low molecular weight hardly ionizable analytes. Rapid Commun Mass Spectrom. 2016;30(14):1680–6.

    Article  CAS  PubMed  Google Scholar 

  144. Kögel JF, Xie X, Baal E, Gesevičius D, Oelkers B, Kovačević B, Sundermeyer J. Superbasic alkyl-substituted bisphosphazene proton sponges: synthesis, structural features, thermodynamic and kinetic basicity, nucleophilicity and coordination chemistry. Chem A Eur J. 2014;20(25):7670–85.

    Article  CAS  Google Scholar 

  145. Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J. Structural characterization of neutral saccharides by negative ion MALDI mass spectrometry using a superbasic proton sponge as deprotonating matrix. J Am Soc Mass Spectrom. 2017;28(8):1666–75.

    Article  CAS  PubMed  Google Scholar 

  146. Wong AW, Cancilla MT, Voss LR, Lebrilla CB. Anion dopant for oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 1998;71:205–11.

    Article  Google Scholar 

  147. Wong AW, Wang H, Lebrilla CB. Selection of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal Chem. 2000;72:1419–25.

    Article  CAS  PubMed  Google Scholar 

  148. Thaysen-Andersen M, Mysling S, Højrup P. Site-specific glycoprofiling of N-Linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal Chem. 2009;81(10):3933–43.

    Article  CAS  PubMed  Google Scholar 

  149. North S, Birrell H, Camilleri P. Positive and negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectroh­2-aminoacridone. Rapid Commun Mass Spectrom. 1998;12(7):349–56.

    Article  CAS  Google Scholar 

  150. Nonami H, Tanaka K, Fukuyama Y, Erra-Balsells R. β-Carboline alkaloids as matrices for UV-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in positive and negative ion modes. Analysis of proteins of high molecular mass, and of cyclic and acyclic oligosaccharides. Rapid Commun. Mass Spectrom. 1998;12(6):285–96.

    CAS  Google Scholar 

  151. Yamagaki T, Nakanishi H. Negative-mode matrix-assisted laser desorption/ionization mass spectrometry of maltoheptaose and cyclomaltooligosaccharides. J Mass Spectrom Soc Jpn. 2002;50(4):204–7.

    Article  CAS  Google Scholar 

  152. Yang C, Yanjie Jiang A, Cole RB. Anionic adducts of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2003;75:1638–44.

    Article  CAS  Google Scholar 

  153. Solouki T, Gillig KJ, Russell DH. Mass measurement accuracy of matrix-assisted laser desorbed biomolecules: a Fourier-transform ion cyclotron resonance mass spectrometry study. Rapid Commun. Mass Spectrom. 1994;8(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  154. Guo Z, He L. A binary matrix for background suppression in MALDI-MS of small molecules. Anal Bioanal Chem. 2007;387:1939–44.

    Article  CAS  PubMed  Google Scholar 

  155. Shanta SR, Kim TY, Hong JH, Lee JH, Shin CY, Kim KPK-H, Kim YH, Kim SK, Kim KPK-H. A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites. Analyst. 2012;137:5757–62.

    Article  CAS  PubMed  Google Scholar 

  156. Shanta SR, Zhou LH, Park YS, Kim YH, Kim Y, Kim KP. Binary matrix for MALDI imaging mass spectrometry of phospholipids in both ion modes. Anal Chem. 2011;15:1252–9.

    Article  CAS  Google Scholar 

  157. Kim Y, Kim T, Lee J, Im H, Kim J. Enhanced detection of glycans by MALDI-TOF mass spectrometry using a binary matrix of 2,5-dihydroxybenzoic acid and 2,6-dihydroxybenzoic acid. Mass Spectrom Lett. 2013;4(2):38–40.

    Article  CAS  Google Scholar 

  158. Calvano CD, Monopoli A, Ditaranto N, Palmisano F. 1,8-bis(Dimethylamino)naphthalene/9-aminoacridine: a new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry. Anal Chim Acta. 2013;798:56–63.

    Article  CAS  PubMed  Google Scholar 

  159. Cheng X, Ye X, Liu D, Zhao N, Gao H, Wang P, Ge G, Zhang X. N-butyl-4-hydroxy-1,8-naphthalimide: a new matrix for small molecule analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(21):1779–84.

    Article  CAS  PubMed  Google Scholar 

  160. Chen Y, Gao D, Bai H, Liu H, Lin S, Jiang Y. Carbon dots and 9AA as a binary matrix for the detection of small molecules by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2016;27(7):1227–35.

    Article  CAS  PubMed  Google Scholar 

  161. Lin P-C, Tseng M-C, Su A-K, Chen Y-J, Lin C-C. Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal Chem. 2007;79:3401–8.

    Article  CAS  PubMed  Google Scholar 

  162. Tseng MC, Obena R, Lu YW, Lin PC, Lin PY, Yen YS, Lin JT, Huang LD, Lu KL, Lai LL, Lin CC, Chen YJ. Dihydrobenzoic Acid Modified Nanoparticle as a MALDI-TOF MS Matrix for Soft Ionization and Structure Determination of Small Molecules with Diverse Structures. J Am Soc Mass Spectrom. 2010;21(11):1930–9.

    CAS  PubMed  Google Scholar 

  163. Liu H, Dai J, Zhou J, Huang H, Fei Chena ZL. A hybrid ionic liquid–matrix material, TiO2–Si–NH3+[CHC−], as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Int J Mass Spectrom. 2015;376:85–9.

    Article  CAS  Google Scholar 

  164. Feenstra AD, O’Neill KC, Yagnik GB, Lee YJ. Organic-inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides. RSC Adv. 2016;6(101):99260–8.

    Article  CAS  Google Scholar 

  165. Fleith C, Cantel S, Subra G, Mehdi A, Ciccione J, Martinez J, Enjalbal C. Laser desorption ionization mass spectrometry of peptides on a hybrid CHCA organic-inorganic matrix. Analyst. 2014;139(15):3748–54.

    Article  CAS  PubMed  Google Scholar 

  166. Tang HZ, Ma YL, Liu F, Liu F, Liu ZW, Li JW, Zhou HY, Gao ZX. Detection of small molecules using SBA-15 modified CHCA as a novel matrix of MALDI-TOF MS. Int J Mass Spectrom. 2017;417:34–39.

    Article  CAS  Google Scholar 

  167. Morris NJ, Anderson H, Thibeault B, Vertes A, Powell MJ, Razunguzwa TT. Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Adv. 2015;5(88):72051–7.

    Article  CAS  Google Scholar 

  168. Korte AR, Stopka SA, Morris N, Razunguzwa T, Vertes A. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal Chem. 2016;88(18):8989–96.

    Article  CAS  PubMed  Google Scholar 

  169. Picca RA, Calvano CD, Lo Faro MJ, Fazio B, Trusso S, Ossi PM, Neri F, D’Andrea C, Irrera A, Cioffi N. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. J Mass Spectrom. 2016;51(9):849–56.

    Article  CAS  PubMed  Google Scholar 

  170. Alhmoud HZ, Guinan TM, Elnathan R, Kobus H, Voelcker NH. Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. Analyst. 2014;139:5999–6009.

    Article  CAS  PubMed  Google Scholar 

  171. Marsico ALM, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. Enhanced laser desorption/ionization mass spectrometric detection of biomolecules using gold nanoparticles, matrix, and the coffee ring effect. Anal Chem. 2017;89(5):3009–14.

    Article  CAS  PubMed  Google Scholar 

  172. Abdelhamid HN, Wu H-F. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem. 2016;408(17):4485–502.

    Article  CAS  PubMed  Google Scholar 

  173. Dufresne M, Masson J-F, Chaurand P. Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal Chem. 2016;88(11):6018–25.

    Article  CAS  PubMed  Google Scholar 

  174. Marsico ALM, Creran B, Duncan B, Elci SG, Jiang Y, Onasch TB, Wormhoudt J, Rotello VM, Vachet RW. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2015;26(11):1931–7.

    Article  CAS  PubMed  Google Scholar 

  175. Sekula, J, Niziol, J, Rode, W, Ruman T. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal Chim Acta. 2015;875:61–72.

    Article  CAS  PubMed  Google Scholar 

  176. Sekuła J, Nizioł J, Rode W, Ruman T. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst. 2015;140(18):6195–209.

    Article  CAS  PubMed  Google Scholar 

  177. Schnapp A, Niehoff AC, Koch A, Dreisewerd K. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods. 2016;104:194–203.

    Article  CAS  PubMed  Google Scholar 

  178. Popović IA, Nešić M, Vranješ M, Šaponjić Z, Petković M. SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. Anal Bioanal Chem. 2016;408(26):7481–90.

    Article  CAS  PubMed  Google Scholar 

  179. Wu Q, Chu JL, Rubakhin SS, Gillette MU, Sweedler J V. Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem Sci. 2017;8(5):3926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Popović I, Milovanović D, Miletić J, Nešić M, Vranješ M, Šaponjić Z, Petković M. Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals’ size and shape. Opt Quantum Electron. 2016;48(2):113.

    Article  CAS  Google Scholar 

  181. Yang M-R, Wang M, Xiao-Yan T, Zhou Jian MX-F. Analysis of small molecule compounds by matrix assisted laser desorption ionization time-of-flight mass spectrometry with ZnO, CuO, and NiO nanoparticles as matrix. Chinese J Anal Chem. 2015;43:1058–62.

    CAS  Google Scholar 

  182. Li Z, Zhang Y-W, Xin Y-L, Bai Y, Zhou H-H, Liu H-W. A lithium-rich composite metal oxide used as a SALDI-MS matrix for the determination of small biomolecules. Chem Commun. 2014;50(50):15397–9.

    Article  CAS  Google Scholar 

  183. Unnikrishnan B, Chang C-Y, Chu H-W, Anand A, Huang C-C. Functional gold nanoparticles coupled with laser desorption ionization mass spectrometry for bioanalysis. Anal Methods. 2016;8(46):8123–33.

    Article  CAS  Google Scholar 

  184. Picca RA, Calvano CD, Cioffi N, Palmisano F. Mechanisms of nanophase-induced desorption in LDI-MS. A SHORT REVIEW. Nanomater (Basel, Switzerland). 2017;7(4):75–81.

    Google Scholar 

  185. Dong X, Cheng J, Li J, Wang Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem. 2010;82(14):6208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ma N, Bian W, Li R, Geng H, Zhang J, Dong C, Shuang S, Cai Z. Quantitative analysis of nitro-polycyclic aromatic hydrocarbons in PM 2.5 samples with graphene as a matrix by MALDI-TOF MS. Anal Methods. 2015;7(9):3967–71.

    Article  CAS  Google Scholar 

  187. Friesen WL, Schultz BJ, Destino JF, Alivio TEG, Steet JR, Banerjee S, Wood TD. Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry. J Am Soc Mass Spectrom. 2015;26(11):1963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhou D, Guo S, Zhang M, Liu Y, Chen T, Li Z. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal Chim Acta. 2017;962:52–9.

    Article  CAS  PubMed  Google Scholar 

  189. Wang Z, Cai Y, Wang Y, Zhou X, Zhang Y, Lu H. Improved MALDI imaging MS analysis of phospholipids using graphene oxide as new matrix. Sci Rep. 2017;7:44466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zheng X, Zhang J, Wei H, Chen H, Tian Y, Zhang J. Determination of dopamine in cerebrospinal fluid by MALDI-TOF mass spectrometry with a functionalized graphene oxide matrix. Anal Lett. 2016;49(12):1847–61.

    Article  CAS  Google Scholar 

  191. Cai L, Sheng L, Xia M, Li Z, Zhang S, Zhang X, Chen H. Graphene oxide as a novel evenly continuous phase matrix for TOF-SIMS. J Am Soc Mass Spectrom. 2017;28(3):399–408.

    Article  CAS  PubMed  Google Scholar 

  192. Zhang J, Zheng X, Ni Y. Selective enrichment and MALDI-TOF MS analysis of small molecule compounds with vicinal diols by boric acid-functionalized graphene oxide. J Am Soc Mass Spectrom. 2015;26(8):1291–8.

    Article  CAS  PubMed  Google Scholar 

  193. Shih Y-H, Chien C-H, Singco B, Hsu C-L, Lin C-H, Huang H-Y. Metal-organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chem Commun. 2013;49(43):4929.

    Article  CAS  Google Scholar 

  194. Chen L, Ou J, Wang H, Liu Z, Ye M, Zou H. Tailor-made stable Zr(IV)-based metal-organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2016;8:20292–300.

    Article  CAS  PubMed  Google Scholar 

  195. Wang S, Niu H, Zeng T, Zhang X, Cao D, Cai Y. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mater. 2017;239:390–5.

    Article  CAS  Google Scholar 

  196. Armstrong DW, Zhang L-K, He L, Gross ML. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2001;73:3679–86.

    Article  CAS  PubMed  Google Scholar 

  197. Li YL, Gross ML. Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom. 2004;15(12):1833–7.

    Article  CAS  PubMed  Google Scholar 

  198. Crank JA, Armstrong DW. Towards a second generation of ionic liquid matrices (ILMs) for MALDI-MS of peptides, proteins, and carbohydrates. J Am Soc Mass Spectrom. 2009;20(10):1790–800.

    Article  CAS  PubMed  Google Scholar 

  199. Cramer R, Corless S. Liquid ultraviolet matrix-assisted laser desorption/ionization - mass spectrometry for automated proteomic analysis. Proteomics. 2005;5(2):360–70.

    Article  CAS  PubMed  Google Scholar 

  200. Towers MW, Mckendrick JE, Cramer R. Introduction of 4-chloro-α-cyanocinnamic acid liquid matrices for high sensitivity UV-MALDI MS. J Proteome Res. 2010;9(4):1931–40.

    Article  CAS  PubMed  Google Scholar 

  201. Mank M, Stahl A, Boehm G. 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal Chem. 2004;76:2938–50.

    Article  CAS  PubMed  Google Scholar 

  202. Tholey A. Ionic liquid matrices with phosphoric acid as matrix additive for the facilitated analysis of phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(11):1761–8.

    Article  CAS  PubMed  Google Scholar 

  203. Laremore T, Murugesan S, Park, TJ, Avci, FY, Zagorevski D, Linhardt R. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Uncomplexed Highly Sulfated Oligosaccharides Using Ionic Liquid Matrices. Anal Chem 2006;78:1774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fukuyama Y, Nakaya S, Yamazaki Y, Tanaka K. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal Chem. 2008;80:2171–9.

    Article  CAS  PubMed  Google Scholar 

  205. Li YL, Gross ML, Hsu F-F. Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom. 2005;16(5):679–82.

    Article  CAS  PubMed  Google Scholar 

  206. Tholey A, Heinzle E. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal Bioanal Chem. 2006;386:24–37.

    Article  CAS  PubMed  Google Scholar 

  207. Towers MW, Cramer R. Ionic liquids and other liquid matrices for sensitive MALDI MS analysis. Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry. Springer International Publishing, Cham; 2016. p. 51–64.

  208. Calvano CD, Carulli S, Palmisano F. Aniline/α-cyano-4-hydroxycinnamic acid is a highly versatile ionic liquid for matrix-assisted laser desorption/ ionization mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1659–68.

    Article  CAS  PubMed  Google Scholar 

  209. Shrivas K, Tapadia K. Ionic liquid matrix-based dispersive liquid–liquid microextraction for enhanced MALDI–MS analysis of phospholipids in soybean. J Chromatogr B. 2015;1001:124–30.

    Article  CAS  Google Scholar 

  210. Calvano CD, Ceglie CD, D’Accolti L, Zambonin C. MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem. 2012;134(2):1192–8.

    Article  CAS  PubMed  Google Scholar 

  211. Mukherjee G, Röwer C, Koy C, Protzel C, Lorenz P, Thiesen H-J, Hakenberg OW, Glocker MO. Ultraviolet Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Phosphopeptide Analysis with a Solidified Ionic Liquid Matrix. Eur J Mass Spectrom. 2015;21(2):65–77.

    Article  CAS  Google Scholar 

  212. Bronzel JL, Milagre CDF, Milagre HMS. Analysis of low molecular weight compounds using MALDI- and LDI-TOF-MS: Direct detection of active pharmaceutical ingredients in different formulations. J Mass Spectrom. 2017;52(11):752–8.

    Article  CAS  PubMed  Google Scholar 

  213. Do TD, Comi TJ, Dunham SJB, Rubakhin SS, Sweedler J V. Single Cell Profiling Using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation. Anal Chem. 2017;89(5):3078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shrivas K, Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Setou M. Ionic Matrix for Enhanced MALDI Imaging Mass Spectrometry for Identification of Phospholipids in Mouse Liver and Cerebellum Tissue Sections. Anal Chem. 2010; 82(21):8800–6.

    Article  CAS  PubMed  Google Scholar 

  215. Meriaux C, Franck J, Wisztorski M, Salzet M, Fournier I. Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J Proteomics 2010;73(6):1204–18.

    Article  CAS  PubMed  Google Scholar 

  216. Abdelhamid HN, Khan MS, Wu H.-F. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing. Anal Chim Acta 2014;823:51–60.

    Article  CAS  PubMed  Google Scholar 

  217. Cheng X, Ye X, Liu D, Zhao N, Gao H, Wang P, Ge GZX. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry. Anal Chim Acta. 2017;985:114–20.

    Article  CAS  Google Scholar 

  218. Moon JH, Park KM, Ahn SH, Lee SH, Kim MS. Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI. J Am Soc Mass Spectrom. 2015;26(10):1657–64.

    Article  CAS  PubMed  Google Scholar 

  219. McCarley TD, McCarley RL, Limbach PA. Electron-Transfer Ionization in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem. 1998;70:4376–9.

    Article  CAS  Google Scholar 

  220. Macha SF, Limbach PA, Savickas P. Application of nonpolar matrices for the analysis of low molecular weight nonpolar synthetic polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2000;11(8):731–7.

    Article  CAS  PubMed  Google Scholar 

  221. Nazim Boutaghou M, Cole RB. 9,10-Diphenylanthracene as a matrix for MALDI-MS electron transfer secondary reactions. J Mass Spectrom. 2012;47:995–1003.

    Article  CAS  PubMed  Google Scholar 

  222. Asakawa D, Lee CC, Hiraoka K. Negative-mode MALDI mass spectrometry for the analysis of pigments using tetrathiafulvalene as a matrix. J Mass Spectrom. 2008;43:1494–501.

    Article  CAS  PubMed  Google Scholar 

  223. Ulmer L, Mattay J, Torres-Garcia HG, Luftmann H. Letter: The Use of 2-[(2 E )-3-(4- Tert -Butylphenyl)-2-Methylprop-2-Enylidene]Malononitrile as a Matrix for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Eur J Mass Spectrom. 2000;6(1):49–52.

    Article  CAS  Google Scholar 

  224. Wyatt MF, Stein BK, Brenton AG. Characterization of various analytes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 2-[(2E)-3-(4-tert- butylphenyl)-2-methylprop-2-enylidene]malononitrile matrix. Anal Chem. 2006;78:199–206.

    Article  CAS  PubMed  Google Scholar 

  225. Castellanos-García LJ, Agudelo BC, Rosales HF, Cely M, Ochoa-Puentes C, Blanco-Tirado C, Sierra CA, Combariza MY. Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. J Am Soc Mass Spectrom. 2017;28(12):2548–60.

    Article  CAS  PubMed  Google Scholar 

  226. Calvano CD, Ventura G, Cataldi TRI, Palmisano F. Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix. Anal Bioanal Chem. 2015;407(21):6369–79.

    Article  CAS  PubMed  Google Scholar 

  227. Calvano CD, Ventura G, Trotta M, Bianco G, Cataldi TRI, Palmisano F. Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments. J Am Soc Mass Spectrom. 2016;28:125–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project PONa3 00395/1 “BIOSCIENZE & SALUTE (B&H)” of the Ministero Italiano per l’Istruzione, l’Università e la Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosima Damiana Calvano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvano, C.D., Monopoli, A., Cataldi, T.R.I. et al. MALDI matrices for low molecular weight compounds: an endless story?. Anal Bioanal Chem 410, 4015–4038 (2018). https://doi.org/10.1007/s00216-018-1014-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1014-x

Keywords

Navigation