Skip to main content

Advertisement

Log in

Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) assisted laser desorption/ionization mass spectrometry (GALDI-MS) provided new horizons and offered many functions for various applications. This review summarized AuNPs applications for analytical, biotechnology and proteomics. AuNPs efficiently absorbed the laser radiation and transferred the energy to the analyte for the desorption/ionization process. The unique features of AuNPs such as large surface area and high absorption coefficient lead not only to high resolution, low interference and low limit of detection, but also offered selective detection for certain species. AuNPs provided an excellent surface for the analysis of several species such as small molecules, biomarkers, proteins and cells (pathogenic bacteria or cancer cells). AuNPs played many roles such as surface for LDI-MS, probe and stationary phase for separation or preconcentration. AuNPs modified various surface chemistry was applied for a wide range of different wavelength. AuNPs severed as a source of Au+ ions that were suitable for analyte cationisation. Characterization of Au nanoclusters (AuNCs) by mass spectrometry, pros and cons were also highlighted.

Schematic representation of the analysis by Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry (GALDI-MS)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CHCA:

α-cyano-4-hydroxycinnamic acid, alpha-cyano or alpha-matrix

FA:

2-amino-4,5-diphenylfuran-3-carboxylic acid, furoic acid

MA:

2-(2,3-dimethylphenyl)aminobenzoic acid, mefenamic acid

AuNCs:

Au nanoclusters

bio-SH:

Biothiols

Cys:

Cysteine

DIOS:

Desorption/ionization on porous silicon

DHB:

2,5-dihydroxybenzoic acid

ESI-MS:

Electrospray ionization mass spectrometry

F4-ICPMS:

Flow-Field-Flow Fractionation- inductively coupled plasma mass spectrometry

SPR:

Surface plasmon resonance

SERS:

Surface enhanced Raman spectroscopy

SALDI:

Surface-assisted laser desorption/ionization

SA:

5-dimethoxy-4-hydroxycinnamic acid, sinapinic acid

TAGs:

Triacylglycerols

VIS-MALDI:

Visible-wavelength matrix-assisted laser desorption/ionization

References

  1. Torabi SF, Lu Y. Functional DNA nanomaterials for sensing and imaging in living cells. Curr Opin Biotechnol. 2014;28:88–95.

    Article  CAS  Google Scholar 

  2. Estevez MC, Otte MA, Sepulveda B, Lechuga LM. Trends and challenges of refractometric nanoplasmonic biosensors: a review. Anal Chimica Acta. 2014;806:55–73.

    Article  CAS  Google Scholar 

  3. Haruta M. Chance and necessity: my encounter with gold catalysts. Angew Chem Int Ed. 2014;53:52–6.

    Article  CAS  Google Scholar 

  4. Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale. 2014;6:2502–30.

    Article  CAS  Google Scholar 

  5. Manikandan M, Abdelhamid HN, Talib A, Wu HF. Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron. 2014;55:180–6.

    Article  CAS  Google Scholar 

  6. Yi X, Wang F, Qin W, Yuan J, Yang X. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine. 2014;9:1347–65.

    Article  Google Scholar 

  7. Sipova H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chimica Acta. 2013;773:9–23.

    Article  CAS  Google Scholar 

  8. Couture M, Zhao SS, Masson JF. Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys. 2013;15:11190–216.

    Article  CAS  Google Scholar 

  9. Murray-Méthot MP, Ratel M, Masson JF. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J Phys Chem C. 2010;114:8268–75.

    Article  CAS  Google Scholar 

  10. Live LS, Murray-Méthot MP, Masson JF. Localized and propagating surface plasmons in gold particles of near-micron size. J Phys Chem C. 2009;113:40–4.

    Article  CAS  Google Scholar 

  11. Bolduc OR, Masson JF. Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem. 2011;83:8057–62.

    Article  CAS  Google Scholar 

  12. Wei H, Xu H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale. 2013;5:10794–805.

    Article  CAS  Google Scholar 

  13. Valcárcel M, López-lorente AI. Gold nanoparticles in analytical chemistry. 1st ed. Netherland: Elsevier; 2014.

    Google Scholar 

  14. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001;20:157–71.

    Article  CAS  Google Scholar 

  15. Norris NL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113:2309–42.

    Article  CAS  Google Scholar 

  16. Zenobi R, Knockenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17:337–66.

    Article  CAS  Google Scholar 

  17. Salum ML, Itovich LM, Erra-Balsells E. Z-sinapinic acid: the change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis. J Mass Spectrom. 2013;48:1160–9.

    Article  CAS  Google Scholar 

  18. Beavis RC, Chaudhary T, Chait BT. α-Cyano-4-hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectrometry. Org Mass Spectrom. 1992;27:156.

    Article  CAS  Google Scholar 

  19. Abdelhamid HN, Wu HF. Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. Talanta. 2013;115:442–50.

    Article  CAS  Google Scholar 

  20. ChenS CI, Wang J, Hou HJ, Liu Q, Wang J, Xiong J, et al. 2,3,4,5-Tetrakis(3',4'-dihydroxylphenyl)thiophene: a new matrix for the selective analysis of low molecular weight amines and direct determination of creatinine in urine by MALDI-TOF MS. Anal Chem. 2012;84:10291–7.

    Article  CAS  Google Scholar 

  21. Chen R, Chen S, Xiong C, Ding X, Chih-Che W, Chang CC, et al. N-(1-naphthyl) ethylenediaminedinitrate: a new matrix for negative ion MALDI-TOF MS analysis of small molecules. J Am Soc Mass Spectrom. 2012;23:1454–60.

    Article  CAS  Google Scholar 

  22. Abdelhamid HN, Khan MS, Wu HF. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing. Anal Chim Acta. 2014;823:51–60.

    Article  CAS  Google Scholar 

  23. Abdelhamid HN, Gopal J, Wu HF. Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS). Anal Chim Acta. 2013;767:104–11.

    Article  CAS  Google Scholar 

  24. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    Article  CAS  Google Scholar 

  25. Sunner J, Dratz E, Chen YC. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem. 1995;67:4335–42.

    Article  CAS  Google Scholar 

  26. Chiang CK, Chen WT, Chang HT. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev. 2011;40:1269–81.

    Article  CAS  Google Scholar 

  27. Abdelhamid HN. Applications of Nanomaterials and Organic Semiconductors for Bacteria & Biomolecules analysis/ biosensing using Laser Analytical Spectroscopy, National Sun-Yat Sen University, ROC. 2013.

  28. Bergman N, Shevchenko D, Bergquist J. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry. Anal Bioanal Chem. 2014;406:49–61.

    Article  CAS  Google Scholar 

  29. Wu HF, Gopal J, Abdelhamid HN, Hasan N. Quantum dot applications endowing novelty to analytical proteomics. Proteomics. 2012;12:2949–61.

    Article  CAS  Google Scholar 

  30. Abdelhamid HN, Wu HF. Ultrasensitive, rapid, and selective detection of mercury using graphene assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2014;25:861–8.

    Article  CAS  Google Scholar 

  31. Abdelhamid HN, Wu BS, Wu HF. Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta. 2014;126:27–37.

    Article  CAS  Google Scholar 

  32. Arakawa R, Kawasaki H. Functionalized nanoparticles and nanostructured surfaces for surface-assisted laser desorption/ionization mass spectrometry. Anal Sci. 2010;12:1229–40.

    Article  Google Scholar 

  33. Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H, Voelcker NH. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom Rev. 2014;34:627–40.

    Article  CAS  Google Scholar 

  34. Wei H, Nolkrantz K, Powell DH, Woods JH, Ko M, Kennedy RT. Electrospray sample deposition for matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry with attomole detection limits. Rapid Commun Mass Spectrom. 2004;18:1193–200.

    Article  CAS  Google Scholar 

  35. Soukup-Hein RJ, Armstrong DW, Warnke MM. Ionic liquids in analytical chemistry. Ann Rev Anal Chem. 2009;2:145–68.

    Article  CAS  Google Scholar 

  36. Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem. 2014;86:262–85.

    Article  CAS  Google Scholar 

  37. Dreisewerd K. The desorption process in MALDI. Chem Rev. 2003;103:395.

    Article  CAS  Google Scholar 

  38. Abdelhamid HN, Wu HF. A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chimica Acta. 2012;751:94–104.

    Article  CAS  Google Scholar 

  39. Abdelhamid HN, Wu HF. Polymer dots for quantifying the total hydrophobic pathogenic lysates in a single drop. Colloids Surf, B. 2014;115:51–60.

    Article  CAS  Google Scholar 

  40. Abdelhamid HN, Bhaisare M, Wu HF. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta. 2014;120:208–17.

    Article  CAS  Google Scholar 

  41. Pilolli R, Ditaranto N, Monopoli A, Nacci A, Palmisano F, Sabbatini L, et al. Designing functionalized gold surfaces and nanostructures for laser desorption ionisation mass spectrometry. Vacuum. 2014;100:78–83.

    Article  CAS  Google Scholar 

  42. Shastri L, Kailasa SK, Wu HF. Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: Binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS. Talanta. 2010;81:1176–82.

    Article  CAS  Google Scholar 

  43. Cioffi N, De Palo F, Calvano CD, van der Werf ID, Palmisano F, Zambonin PG. Core–shell gold nanoparticles as Non-conventional matrix for the MALDI-ToF-MS detection of amino acids: a preliminary study. Sensor Lett. 2008;6:654–61.

    Article  CAS  Google Scholar 

  44. Chen TH, Yu CJ, Tseng WL. Sinapinic acid-directed synthesis of gold nanoclusters and their application to quantitative matrix-assisted laser desorption/ionization mass spectrometry. Nanoscale. 2014;6:1347–53.

    Article  CAS  Google Scholar 

  45. Lopez-Corte´ R, Oliveira E, Nunez C, Lodeiro C, Cadena M, Fdez-Riverola F, et al. Fast human serum profiling through chemical depletion coupled to gold-nanoparticle-assisted protein separation. Talanta. 2012;100:239–45.

    Article  CAS  Google Scholar 

  46. Ju S, Yeo WS. Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis. Nanotechnology. 2012;23:135701–8.

    Article  CAS  Google Scholar 

  47. Zhang X, Zhu S, Deng C, Zhang X. An aptamer based on-plate microarray for high-throughput insulin detection by MALDI-TOF MS. Chem Commun. 2012;48:2689–91.

    Article  CAS  Google Scholar 

  48. Lee J, Ryoo SR, Kim SK, Ahn JH, Min DH, Yeo WS. Quantitation of surface-bound proteins on biochips using MALDI-TOF MS. Anal Sci. 2011;27:1127–31.

    Article  CAS  Google Scholar 

  49. Nayak R, Knapp DR. Matrix-free LDI mass spectrometry platform using patterned nanostructured gold thin film. Anal Chem. 2010;82:7772–8.

    Article  CAS  Google Scholar 

  50. Sudhir PR, Wu HF, Zhou ZC. Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry. Anal Chem. 2005;77:7380–5.

    Article  CAS  Google Scholar 

  51. Wang Q, Jakubowski JA, Sweedler JV, Bohn PW. Quantitative submonolayer spatial mapping of Arg-Gly-Asp-containing peptide organomercaptan gradients on gold with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2004;76:1–8.

    Article  CAS  Google Scholar 

  52. Kim YE, Yi SY, LeeCS JY, Chung BH. Gold patterned biochips for on-chip immuno-MALDI-TOF MS: SPR imaging coupled multi-protein MS analysis. Analyst (Cambridge, U K). 2012;137:386–92.

    Article  CAS  Google Scholar 

  53. Zhang X, Zhu S, Xiong Y, Deng C, Zhang X. Development of a MALDI-TOF MS strategy for the high-throughput analysis of biomarkers: on-target aptamer immobilization and laser-accelerated proteolysis. Angew Chem Int Ed. 2013;52:6055–8.

    Article  CAS  Google Scholar 

  54. Yang B, Gu K, Sun X, Huang H, Ding Y, Wang F, et al. Simultaneous detection of attomolar pathogen DNAs by Bio-MassCode mass spectrometry. Chem Commun. 2010;46:8288–90.

    Article  CAS  Google Scholar 

  55. Brauer HA, Lampe PD, Yasui YY, Hamajima N, Stolowitz ML. Biochips that sequentially capture and focus antigens for immunoaffinity MALDI-TOF MS: a new tool for biomarker verification. Proteomics. 2010;10:3922–7.

    Article  CAS  Google Scholar 

  56. Xu Y, Zhang L, Lu H, Yang P. On-plate enrichment of glycopeptides by using boronic acid functionalized gold-coated Si wafer. Proteomics. 2010;10:1079–86.

    CAS  Google Scholar 

  57. Yao G, Zhang H, Deng C, Lu H, Zhang X, Yang P. Facile synthesis of 4-mercaptophenylboronic acid functionalized gold nanoparticles for selective enrichment of glycopeptides. Rapid Commun Mass Spectrom. 2009;23:3493–500.

    Article  CAS  Google Scholar 

  58. Chen YJ, Chen SH, Chien YY, Chang YW, Liao HK, Chang CY, et al. Carbohydrate-encapsulated gold nanoparticles for rapid target-protein identification and binding-epitope mapping. ChemBioChem. 2005;6:1169–73.

    Article  CAS  Google Scholar 

  59. Zhang X, Zhu S, Deng C, Zhang X. Highly sensitive thrombin detection by matrix assisted laser desorption ionization-time of flight mass spectrometry with aptamer functionalized core-shell Fe3O4@C@Au magnetic microspheres. Talanta. 2012;88:295–302.

    Article  CAS  Google Scholar 

  60. Teng CH, Ho KC, Lin YS, Chen YC. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal Chem. 2004;76:4337–42.

    Article  CAS  Google Scholar 

  61. Xiong Y, Deng C, Zhang X. Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS. Talanta. 2014;129:282–9.

    Article  CAS  Google Scholar 

  62. Li X, Tan J, Yu J, Feng J, Pan A, Zheng S, et al. Use of a porous silicon-gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis. Anal Chim Acta. 2014;849:27–35.

    Article  CAS  Google Scholar 

  63. Larguinho M, Capelo JL, Baptista PV. Fast nucleotide identification through fingerprinting using gold nanoparticle-based surface-assisted laser desorption/ionisation. Talanta. 2013;10:417–21.

    Article  CAS  Google Scholar 

  64. Tang HW, Lu W, Che CM, Ng KM. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints. Anal Chem. 2010;82:1589–93.

    Article  CAS  Google Scholar 

  65. Huang RC, Chiu WJ, Lai IP, Huang CC. Multivalent Aptamer/Gold Nanoparticle–Modified Graphene Oxide for Mass Spectrometry–Based Tumor Tissue Imaging. Sci Rep. 2015;5:10292.

    Article  CAS  Google Scholar 

  66. Son J, Lee G, Cha S. Direct analysis of triacylglycerols from crude lipid mixtures by gold nanoparticle-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2014;25:891–4.

    Article  CAS  Google Scholar 

  67. Wan D, Gao M, Wang Y, Zhang P, Zhang XA. rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J Sep Sci. 2013;36:629–35.

    Article  CAS  Google Scholar 

  68. Lee J, Lee J, Oh H, Mok H, Yeo WS. Selective analysis of thiol-containing molecules using nanoengineered micro gold shells and LDI-TOF MS. Bull Korean Chem Soc. 2012;33:3076–8.

    Article  CAS  Google Scholar 

  69. Kailasa S, Wu HF. One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst (Cambridge, U K). 2012;137:1629–38.

    Article  CAS  Google Scholar 

  70. Chiang CK, Lin YW, Chen WT, Chang HT. Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomedicine. 2010;6:530.

    CAS  Google Scholar 

  71. Chen WT, Chiang CK, Lin YW, Chang HT. Quantification of captopril in urine through surface-assisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard. J Am Soc Mass Spectrom. 2010;21:864.

    Article  CAS  Google Scholar 

  72. Zhu X, Wu L, Mungra DC, Xia S, Zhu J. Au@SiO2 core-shell nanoparticles for laser desorption/ionization time of flight mass spectrometry. Analyst (Cambridge, U K). 2012;137:2454–8.

    Article  CAS  Google Scholar 

  73. Laurent N, Haddoub R, Voglmeir J, Flitsch SL. MALDI-ToF MS analysis of glycosyltransferase activities on gold surface arrays. Carbohydr Microarrays Methods Mol Biol. 2012;808:269–84.

    Article  CAS  Google Scholar 

  74. Su CL, Tseng WL. Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2007;79:1626–33.

    Article  CAS  Google Scholar 

  75. Lee J, Lee J, Chung T, Yeo WS. Nanoengineered micro gold shells for LDI-TOF analysis of small molecules. Anal Chim Acta. 2012;736:1–6.

    Article  CAS  Google Scholar 

  76. Prabhakaran A, Yin J, Nysten B, Degand H, Morsomme P, Mouhib T, et al. Metal condensates for low-molecular-weight matrix-free laser desorption/ionization. Int J Mass Spectrom. 2012;315:22–30.

    Article  CAS  Google Scholar 

  77. Huang YF, Chang HT. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem. 2007;79:4852–9.

    Article  CAS  Google Scholar 

  78. Kuo TR, Wang DY, Chiu YC, Yeh YC, Chen WT, Chen CH, et al. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry. Anal Chimica Acta. 2014;809:97–103.

    Article  CAS  Google Scholar 

  79. Yang M, Fujino T. Gold nanoparticles loaded on zeolite as inorganic matrix for laser desorption/ionization mass spectrometry of small molecules. Chem Phys Lett. 2014;592:160–3.

    Article  CAS  Google Scholar 

  80. Ocsoy I, Gulbakan B, Shukoor MI, Xiong X, Chen T, Powell DH, et al. Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry. ACS Nano. 2013;7:417–27.

    Article  CAS  Google Scholar 

  81. Amendola V, Litti L, Meneghetti M. LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region. Anal Chem. 2013;85:11747–54.

    Article  CAS  Google Scholar 

  82. Pilolli R, Ditaranto N, Di Franco C, Palmisano F, Cioffi N. Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation-mass spectrometry of low molecular weight analytes. Anal Bioanal Chem. 2012;404:1703–11.

    Article  CAS  Google Scholar 

  83. Nagahori N, Nishimura SI. Direct and efficient monitoring of glycosyltransferase reactions on gold colloidal nanoparticles by using mass spectrometry. Chem Eur J. 2006;12:6478–85.

    Article  CAS  Google Scholar 

  84. Gopal J, Abdelhamid HN, Hua PY, Wu HF. Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B. 2013;1:2463–75.

    Article  CAS  Google Scholar 

  85. Abdelhamid HN, Wu HF. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B. 2013;1:3950–61.

    Article  CAS  Google Scholar 

  86. Abdelhamid HN, Wu HF (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J. Mater.Chem.B 1: 6094-6106.

  87. Wu BS, Abdelhamid HN, Wu HF. Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv. 2014;4:3722–31.

    CAS  Google Scholar 

  88. Bhaisare ML, Abdelhamid HN, Wu BS, Wu HF. Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J Mater Chem B. 2014;2:4671–83.

    Article  CAS  Google Scholar 

  89. Gopal J, Manikandan M, Wu HF. Low cost aluminium foil platforms for rapid mass spectrometric differentiation of the fungal pathogen Aspergillus niger mycelium and spores by in situ gold nanosphere accelerated microwave digestion. RSC Adv. 2014;4:10982–9.

    Article  CAS  Google Scholar 

  90. Chan PH, Wong SY, Lin SH, Chen YC. Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria. Rapid Commun Mass Spectrom. 2013;27:2143–8.

    Article  CAS  Google Scholar 

  91. Lai HZ, Wang SG, Wu CY, Chen YC. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2015;87:2114–20.

    Article  CAS  Google Scholar 

  92. Tseng Y, Chang HY, Huang CC. A mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem Commun. 2012;48:8712–4.

    Article  CAS  Google Scholar 

  93. Castellana ET, Russell DH. Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett. 2007;7:3023–5.

    Article  CAS  Google Scholar 

  94. Castellana ET, Gamez RC, Gómez ME, Russell DH. Longitudinal surface plasmon resonance based gold nanorod biosensorsfor mass spectrometry. Langmuir. 2010;26:6066–70.

    Article  CAS  Google Scholar 

  95. Chen LC, Mori K, Hori H, Hiraoka K. A useful binary matrix for visible-MALDI of Low molecular weight analytes. Int. J. Mass Spectrom. 2009;279:41–6.

    CAS  Google Scholar 

  96. Spencer MT, Furutani H, Oldenburg SJ, Darlington TK, Prather KA. Gold nanoparticles as a matrix for visible-wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules. J Phys Chem C. 2008;112:4083–90.

    Article  CAS  Google Scholar 

  97. Huang YF, Chang HT. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2006;78:1485–93.

    Article  CAS  Google Scholar 

  98. Wang Y, Wang Y, Zhou F, Kim P, Xia Y. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small. 2012;8:3769–73.

    Article  CAS  Google Scholar 

  99. Waki M, Sugiyama E, Kondo T, Sano K, Setou M. Nanoparticle-assisted laser desorption/ionization for metabolite imaging. Methods Mol Biol. 2015;1203:159–73.

    Article  CAS  Google Scholar 

  100. Segu ZM, Timmons RB, Kinsel GR. Increasing surface capacity for on-probe affinity capture MALDI-MS via gold particle attachment to allyl amine plasma polymers. Anal Chem. 2011;83:2500–4.

    Article  CAS  Google Scholar 

  101. Dufresne M, Thomas A, Breault-Turcot J, Masson JF, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem. 2013;85:3318–24.

    Article  CAS  Google Scholar 

  102. Chen LC, Mori K, Hori H, Hiraoka K. Au-assisted visible laser MALDI. IntJ Mass Spectrom. 2009;279:41–6.

    Article  CAS  Google Scholar 

  103. Caballero-Díaz E, Valcárcel M. Chapter 5 – toxicity of gold nanoparticles. Compr Anal Chem. 2014;66:207–54.

    Article  CAS  Google Scholar 

  104. Abdelhamid HN, Wu HF. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Anal Chem. 2014;65:30–46.

    Article  CAS  Google Scholar 

  105. Khan MS, Vishakante GD, Siddaramaiah H. Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interface Sci. 2013;199:44–58.

    Article  CAS  Google Scholar 

  106. McLean JA, Stumpo KA, Russell DH. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc. 2005;27:5304–5.

    Article  CAS  Google Scholar 

  107. Novikov A, Caroff M, Della-Negra S, Lebeyec Y, Pautrat M, Schultz JA, et al. Matrix-implanted laser desorption/ionization mass spectrometry. Anal Chem. 2004;76:7288.

    Article  CAS  Google Scholar 

  108. Duan J, Linman MJ, Chen CY, Cheng QJ. CHCA-modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides. J Am Soc Mass Spectrom. 2009;20:1530–9.

    Article  CAS  Google Scholar 

  109. Lee J, Jayathilaka LP, Gupta S, Huang JS, Lee BS. Gold ion-angiotensin peptide interaction by mass spectrometry. J Am Soc Mass Spectrom. 2012;23:942–51.

    Article  CAS  Google Scholar 

  110. Collins JA, Xirouchaki C, Palmer RE, Heath JK, Jones CH. Clusters for biology: immobilization of proteins by size-selected metal clusters. Appl Surf Sci. 2004;226:197–208.

    Article  CAS  Google Scholar 

  111. Kirk JS, Bohn PW. Surface adsorption and transfer of organomercaptans to colloidal gold and direct identification by matrix assisted laser desorption/ionization mass spectrometry. J Am Chem Soc. 2004;126:5920–6.

    Article  CAS  Google Scholar 

  112. Gioria S, Chassaigne H, Carpi D, Parracino A, Meschini S, Barboro P, et al. A proteomic approach to investigate AuNPs effects in Balb/3T3 cells. Toxicol Lett. 2014;228:111–26.

    Article  CAS  Google Scholar 

  113. Ha TK, Lee TG, Song NW, Moon DW, Han SY. Cation-assisted laser desorption/ionization for matrix-free surface mass spectrometry of alkanethiolate self-assembled monolayers on gold substrates and nanoparticles. Anal Chem. 2008;80:8526–31.

    Article  CAS  Google Scholar 

  114. Trapiella-Alfonso L, Costa-Fernández JM, Encinar JR, Pereiro R, Sanz-Medel A. Chapter 8 – mass spectrometry for the characterization of gold nanoparticles. Compr Anal Chem. 2014;66:329–56.

    Article  CAS  Google Scholar 

  115. Bustos ARM, Jorge Ruiz Encinar JR, Sanz-Medel A. Mass spectrometry for the characterisation of nanoparticles. Anal Bioanal Chem. 2013;405:5637–43.

    Article  CAS  Google Scholar 

  116. Fernández B, Costa JM, Pereiro R, Sanz-Medel A. Inorganic mass spectrometry as a tool for characterization at the nanoscale. Anal Bioanal Chem. 2010;396:15–29.

    Article  CAS  Google Scholar 

  117. Trapiella-Alfonso L, Costa-Fernandez JM, Encinar JR, Pereiro R, Alfredo Sanz-Medel A Chapter 8. Mass Spectrometry for the Characterization of Gold Nanoparticles, In book: Gold Nanoparticles in Analytical Chemistry, Chapter 8, Publisher: Elsevier, Editors: Miguel Valcárcel, Angela López-Lorente, pp.329-35;2001.

  118. Meisterjahn B, Neubauer E, der Kammer FV, Hennecke DT, Hofmann T. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J Chromatogr A. 2014;1372C:204–11.

    Article  CAS  Google Scholar 

  119. Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P. Glutathione capped gold AuN(SG)M clusters studied by isotope-resolved mass spectrometry. Int J Mass Spectrom. 2013;335:1–6.

    Article  CAS  Google Scholar 

  120. Zavras A, Khairallah GN, O’Hair RAJ. Bis(diphenylphosphino)methane ligated gold cluster cations: synthesis and gas-phase unimolecular reactivity. Int J Mass Spectrometry. 2013;354–355:242–8.

    Article  CAS  Google Scholar 

  121. Johnson GE, Laskin J. Soft landing of mass-selected gold clusters: Influence of ion and ligand on charge retention and reactivity. Int J Mass Spectrom. 2014;377:205–13.

    Article  CAS  Google Scholar 

  122. Yan B, Zhu ZJ, Miranda OR, Chompoosor A, Rotello VM, Richard Vachet RW. Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Anal Bioanal Chem. 2010;396:1025–35.

    Article  CAS  Google Scholar 

  123. Zhu ZJ, Ghosh PS, Miranda OR, Vachet RW, Rotello VM. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J Am Chem Soc. 2008;130:14139–43.

    Article  CAS  Google Scholar 

  124. Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM. Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun. 2012;48:4543–5.

    Article  CAS  Google Scholar 

  125. García I, Henriksen-Lacey M, Sánchez-Iglesias A, Grzelczak M, Penadés S, Liz-Marzán LM. Residual CTAB ligands as mass spectrometry labels to monitor cellular uptake of Au nanorods. J Phys Chem Lett. 2015;6:2003–8.

    Article  CAS  Google Scholar 

  126. Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). J Am Chem Soc. 2008;130:5940–6.

    Article  CAS  Google Scholar 

  127. della Sala F, Kay ER. Reversible control of nanoparticle functionalization and physicochemical properties by dynamic covalent exchange. Angew Chem. 2015;127:4261–5.

    Article  Google Scholar 

  128. Kouchi H, Kawasaki H, Arakawa R. A new matrix of MALDI-TOF MS for the analysis of thiolate-protected gold clusters. Anal Methods. 2012;4:3600–3.

    Article  CAS  Google Scholar 

  129. Beloqui A, Sanchez-Ruiz A, Martin-Lomas M, Reichardt NC. A surface-based mass spectrometry method for screening glycosidase specificity in environmental samples. Chem Commun. 2012;48:1701–3.

    Article  CAS  Google Scholar 

  130. Tang J, Liu Y, Qi D, Yao G, Deng C, Zhang X. On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics. 2009;9:5046–55.

    Article  CAS  Google Scholar 

  131. Wang MT, Liu MH, Wang CRC, Chang SY. Silver-coated gold nanoparticles as concentrating probes and matrices for surface-assisted laser desorption/ionization mass spectrometric analysis of aminoglycosides. J Am Soc Mass Spectrom. 2009;20:1925–32.

    Article  CAS  Google Scholar 

  132. Hanay MS, Kelber S, Naik AK, Chi D, Hentz S, Bullard EC, et al. Single-protein nanomechanical mass spectrometry in real time. Nat Nanotechnol. 2012;7:602–8.

    Article  CAS  Google Scholar 

  133. Pilolli R, Palmisano F, Cioffi N. Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem. 2012;402:601–23.

    Article  CAS  Google Scholar 

  134. Daniel De Bord J, Prabhakaran A, Eller MJ, Verkhoturov SV, Delcorte A, Schweikert EA. Metal-assisted SIMS with hypervelocity gold cluster projectiles. Int J Mass Spectrom. 2013;343:28–36.

    Google Scholar 

Download references

Acknowledgments

H.F.Wu is particularly grateful to the Ministry of Science and Technology of Taiwan for her financial support. H.N. Abdelhamid thanks Assuit University and Ministry of Higher Education for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hani Nasser Abdelhamid or Hui-Fen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhamid, H.N., Wu, HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 408, 4485–4502 (2016). https://doi.org/10.1007/s00216-016-9374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9374-6

Keywords

Navigation