Skip to main content
Log in

Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stroke is a major cause of mortality and long-term disability worldwide. The study of biomarkers and pathogenesis is vital for early diagnosis and treatment of stroke. In the present study, a continuous-flow normal-phase/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry (NP/RP 2D LC-QToF/MS) method was employed to measure lipid species in human plasma, including healthy controls and lacunar infarction (LI) patients. As a result, 13 lipid species were demonstrated with significant difference between the two groups, and a “plasma biomarker model” including glucosylceramide (38:2), phosphatidylethanolamine (35:2), free fatty acid (16:1), and triacylglycerol (56:5) was finally established. This model was evaluated as an effective tool in that area under the receiver operating characteristic curve reached 1.000 in the discovery set and 0.947 in the validation set for diagnosing LI patients from healthy controls. Besides, the sensitivity and specificity of disease diagnosis in validation set were 93.3% and 96.6% at the best cutoff value, respectively. This study demonstrates the promising potential of NP/RP 2D LC-QToF/MS-based lipidomics approach in finding bio-markers for disease diagnosis and providing special insights into the metabolism of stroke induced by small vessel disease.

Flow-chart of the plasma biomarker model establishment through biomarker screening and validation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARIC:

Atherosclerosis risk in communities

AUC:

Area under the curve

BPCs:

Base peak chromatograms

CEF:

Compound exchange format

Cer:

Ceramide

DG:

Diacylglycerol

EICs:

Extracted ion chromatograms

ESM:

Electronic supplementary material

FDR:

False discovery rate

FFA:

Free fatty acids

GalCer:

Galactosylceramide

GCS:

Glucosylceramide synthase

GluCer:

Glucosylceramide

LacCer:

Lactosylceramide

LI:

Lacunar infarction

LPC:

Lysophosphatidylcholine

LPE:

Lysophosphatidylethanolamine

LPG:

Lysophosphatidylglycerol

MG:

Monoacylglycerol

MPP:

Mass profiler professional

MS/MS:

Tandem mass spectra

NP/RP 2D LC-QToF/MS:

Normal-phase/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry

PC:

Phosphatidylcholine

PCA:

Principal component analysis

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PLA2 :

Phospholipase A2

PS:

Phosphatidylserine

ROC:

Receiver operating characteristic

SM:

Sphingomyelin

TG:

Triacylglycerol

References

  1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11), e442.

    Article  Google Scholar 

  2. Bonita R, Mendis S, Truelsen T, Bogousslavsky J, Toole J, Yatsu F. The global stroke initiative. Lancet Neurol. 2004;3(7):391–3.

    Article  Google Scholar 

  3. Uchino K, Risser JMH, Smith MA, Moye LA, Morgenstern LB. Ischemic stroke subtypes among Mexican Americans and non-hispanic whites—the BASIC Project. Neurology. 2004;63(3):574–6.

    Article  CAS  Google Scholar 

  4. Fisher CM. Lacunes—small deep cerebral infarcts. Neurology. 1965;15(8):774–84.

    Article  CAS  Google Scholar 

  5. Bamford J, Sandercock P, Jones L, Warlow C. The natural-history of lacunar infarction—the oxfordshire community stroke project. Stroke. 1987;18(3):545–51.

    Article  CAS  Google Scholar 

  6. Arboix A, Marti-Vilalta JL. Lacunar stroke. Expert Rev Neurother. 2009;9(2):179–96.

    Article  Google Scholar 

  7. Adibhatla RM, Hatcher JF. Secretory phospholipase A(2) IIA is up-regulated by TNF-alpha and IL-1 alpha/beta after transient focal cerebral ischemia in rat (Retracted article. See vol. 1507, pp. 154, 2013). Brain Res. 2007;1134(1):199–205.

    Article  CAS  Google Scholar 

  8. Wang HYJ, Liu CB, Wu HW, Kuo S. Direct profiling of phospholipids and lysophospholipids in rat brain sections after ischemic stroke. Rapid Commun Mass Spectrom. 2010;24(14):2057–64.

    Article  CAS  Google Scholar 

  9. Yaemsiri S, Sen S, Tinker LF, Robinson WR, Evans RW, Rosamond W, et al. Serum fatty acids and incidence of ischemic stroke among postmenopausal women. Stroke. 2013;44(10):2710–7.

    Article  CAS  Google Scholar 

  10. Lee W-C, Wong H-Y, Chai Y-Y, Shi C-W, Amino N, Kikuchi S, et al. Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun. 2012;425(4):842–7.

    Article  CAS  Google Scholar 

  11. Slowik A, Iskra T, Turaj W, Hartwich J, Dembinska-Kiec A, Szczudlik A. LDL phenotype B and other lipid abnormalities in patients with large vessel disease and small vessel disease. J Neurol Sci. 2003;214(1–2):11–6.

    Article  CAS  Google Scholar 

  12. Willey JZ, Xu Q, Boden-Albala B, Paik MC, Moon YP, Sacco RL, et al. Lipid profile components and risk of ischemic stroke The Northern Manhattan Study (NOMAS). Arch Neurol. 2009;66(11):1400–6.

    Article  Google Scholar 

  13. Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86(1):161–75.

    Article  CAS  Google Scholar 

  14. Yang L, Li M, Shan YB, Shen SS, Bai Y, Liu HW. Recent advances in lipidomics for disease research. J Sep Sci. 2016;39(1):38–50.

    Article  CAS  Google Scholar 

  15. Li M, Tong XL, Lv P, Feng BS, Yang L, Wu Z, et al. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients. J Chromatogr A. 2014;1372:110–9.

    Article  CAS  Google Scholar 

  16. Rosamond WD, Folsom AR, Chambless LE, Wang CH, McGovern PG, Howard G, et al. Stroke incidence and survival among middle-aged adults—9-year follow-up of the Atherosclerosis Risk in Communities (ARIC) cohort. Stroke. 1999;30(4):736–43.

    Article  CAS  Google Scholar 

  17. Hatano S. Experience from a multicenter stroke register—preliminary report. Bull World Health Organ. 1976;54(5):541–53.

    CAS  Google Scholar 

  18. Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke. 2011;6(1):47–59.

    Article  Google Scholar 

  19. Turin TC, Kita Y, Rumana N, Nakamura Y, Takashima N, Ichikawa M, et al. Ischemic stroke subtypes in a Japanese population Takashima Stroke Registry, 1988–2004. Stroke. 2010;41(9):1871–6.

    Article  Google Scholar 

  20. Lv P, Jin HQ, Liu YY, Cui W, Peng Q, Liu R, et al. Comparison of risk factor between lacunar stroke and large artery atherosclerosis stroke: a cross-sectional study in China. PLoS One. 2016;11(3), e0149605.

    Article  Google Scholar 

  21. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  Google Scholar 

  22. Nie HG, Liu RR, Yang YY, Bai Y, Guan YF, Qian DQ, et al. Lipid profiling of rat peritoneal surface layers by online normal- and reversed-phase 2D LC QToF-MS. J Lipid Res. 2010;51(9):2833–44.

    Article  CAS  Google Scholar 

  23. Li M, Feng BS, Liang Y, Zhang W, Bai Y, Tang W, et al. Lipid profiling of human plasma from peritoneal dialysis patients using an improved 2D (NP/RP) LC-QToF MS method. Anal Bioanal Chem. 2013;405(21):6629–38.

    Article  CAS  Google Scholar 

  24. Yang L, Cui XG, Zhang NN, Li M, Bai Y, Han XH, et al. Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem. 2015;407(17):5065–77.

    Article  CAS  Google Scholar 

  25. Huang Q, Tan YX, Yin PY, Ye GZ, Gao P, Lu X, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013;73(16):4992–5002.

    Article  CAS  Google Scholar 

  26. Hyotylainen T, Oresic M. Optimizing the lipidomics workflow for clinical studies-practical considerations. Anal Bioanal Chem. 2015;407(17):4973–93.

    Article  CAS  Google Scholar 

  27. Berglund L, Sacks F, Brunzell JD. Risk factors for cardiovascular disease: renewed interest in triglycerides. Clin Lipidol. 2013;8(1):1–4.

    Article  CAS  Google Scholar 

  28. Laloux P, Galanti L, Jamart J. Lipids in ischemic stroke subtypes. Acta Neurol Belg. 2004;104(1):13–9.

    CAS  Google Scholar 

  29. Shin DW, Lee KB, Seo JY, Kim JS, Roh H, Ahn MY, et al. Association between hypertriglyceridemia and lacunar infarction in type 2 diabetes mellitus. J Stroke Cerebrovasc Dis. 2015;24(8):1873–8.

    Article  Google Scholar 

  30. Antonios N, Angiolillo DJ, Silliman S. Hypertriglyceridemia and ischemic stroke. Eur Neurol. 2008;60(6):269–78.

    Article  CAS  Google Scholar 

  31. Labreuche J, Touboul PJ, Amarenco P. Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: a systematic review of the epidemiological studies. Atherosclerosis. 2009;203(2):331–45.

    Article  CAS  Google Scholar 

  32. Li YL, Su X, Stahl PD, Gross ML. Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal Chem. 2007;79(4):1569–74.

    Article  CAS  Google Scholar 

  33. Shanta SR, Choi CS, Lee JH, Shin CY, Kim YJ, Kim KH, et al. Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia. J Lipid Res. 2012;53(9):1823–31.

    Article  CAS  Google Scholar 

  34. Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A(2), hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal. 2003;5(5):647–54.

    Article  CAS  Google Scholar 

  35. Wang HYJ, Wu HW, Tsai PJ, Liu CB. MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemia-mediated changes of lipids. Anal Bioanal Chem. 2012;404(1):113–24.

    Article  CAS  Google Scholar 

  36. Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Yamaguchi-Okada M, Goto-Inoue N, et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience. 2010;168(1):219–25.

    Article  CAS  Google Scholar 

  37. Iso H, Sato S, Umemura U, Kudo M, Koike K, Kitamura A, et al. Linoleic acid, other fatty acids, and the risk of stroke. Stroke. 2002;33(8):2086–93.

    Article  CAS  Google Scholar 

  38. Wang X, Feng A, Zhu C. Cerebrospinal fluid levels of free fatty acid associated with ischemic stroke recurrence and functional outcome. Neurol Sci. 2016;37(9):1525–9.

    Article  Google Scholar 

  39. Ryland LK, Fox TE, Liu X, Loughran TP, Kester M. Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther. 2011;11(2):138–49.

    Article  CAS  Google Scholar 

  40. Takahashi K, Ginis I, Nishioka R, Klimanis D, Barone FC, White RF, et al. Glucosylceramide synthase activity and ceramide levels are modulated during cerebral ischemia after ischemic preconditioning. J Cereb Blood Flow Metab. 2004;24(6):623–7.

    Article  CAS  Google Scholar 

  41. Jickling GC, Sharp FR. Biomarker panels in ischemic stroke. Stroke. 2015;46(3):915–20.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (grant numbers, 21527809 and 21175005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yining Huang or Huwei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Li Yang and Pu Lv contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Lv, P., Ai, W. et al. Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 409, 3211–3222 (2017). https://doi.org/10.1007/s00216-017-0261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0261-6

Keywords

Navigation