Skip to main content
Log in

Cannabinoid tetrad effects of oral Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in male and female rats: sex, dose-effects and time course evaluations

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The legalization of medicinal use of Cannabis sativa in most US states and the removal of hemp from the Drug Enforcement Agency (DEA) controlled substances act has resulted in a proliferation of products containing Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for oral consumption (e.g., edibles, oils, and tinctures) that are being used for recreational and medicinal purposes.

Objective

This study examined the effects of cannabinoids THC and CBD when administered orally on measures of pain sensitivity, body temperature, locomotor activity, and catalepsy (i.e., cannabinoid tetrad) in male and female Sprague Dawley rats.

Methods

Rats (N = 24, 6 per sex/drug group) were administered THC (1–20 mg/kg), CBD (3–30 mg/kg), or sesame oil via oral gavage. Thermal and mechanical pain sensitivity (tail flick assay, von Frey test), rectal measurements for body temperature, locomotor activity, and the bar-test of catalepsy were completed. A separate group of rats (N = 8/4 per sex) was administered morphine (5–20 mg/kg; intraperitoneal, IP) and evaluated for pain sensitivity as a positive control.

Results

We observed classic tetrad effects of antinociception, hypothermia, hyper- and hypolocomotion, and catalepsy after oral administration of THC that were long lasting (> 7 h). CBD modestly increased mechanical pain sensitivity and produced sex-dependent effects on body temperature and locomotor activity.

Conclusions

Oral THC and CBD produced long lasting effects that differed in magnitude and time course when compared with other routes of administration. Examination of cannabinoid effects administered via different routes of administration, species, and in both males and females is critical to enhance translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

THC:

Δ9-Tetrahydrocannabinol

CBD:

Cannabidiol

CB1R:

Cannabinoid receptor 1

IP:

Intraperitoneal

SC:

Subcutaneous

IV:

Intravenous

TF:

Tail flick

MPE:

Maximum possible effect

References

  • Abraham AD, Leung EJY, Wong BA, Rivera ZMG, Kruse LC, Clark JJ, Land BB (2020) Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology 45(7):1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Booker L, Naidu PS, Razdan RK, Mahadevan A, Lichtman AH (2009) Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug Alcohol Depend 105(1–2):42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britch SC, Wiley JL, Yu Z, Clowers BH, Craft RM (2017) Cannabidiol-Delta(9)-tetrahydrocannabinol interactions on acute pain and locomotor activity. Drug Alcohol Depend 175:187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein S, Hunter SA, Latham V, Renzulli L (1987) A major metabolite of delta 1-tetrahydrocannabinol reduces its cataleptic effect in mice. Experientia 43(4):402–403

    Article  CAS  PubMed  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265(1):218–226

    CAS  PubMed  Google Scholar 

  • Cooper ZD, Craft RM (2018) Sex-dependent effects of cannabis and cannabinoids: a translational perspective. Neuropsychopharmacology 43(1):34–51

    Article  CAS  PubMed  Google Scholar 

  • Craft RM, Britch SC, Buzitis NW, Clowers BH (2019) Age-related differences in Delta(9)-tetrahydrocannabinol-induced antinociception in female and male rats. Exp Clin Psychopharmacol 27(4):338–347

    Article  CAS  PubMed  Google Scholar 

  • Dixon WJ (1991) Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev 15(1):47–50

    Article  CAS  PubMed  Google Scholar 

  • Dow-Edwards D, Zhao N (2008) Oral THC produces minimal behavioral alterations in preadolescent rats. Neurotoxicol Teratol 30(5):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farquhar CE, Breivogel CS, Gamage TF, Gay EA, Thomas BF, Craft RM, Wiley JL (2019) Sex, THC, and hormones: effects on density and sensitivity of CB1 cannabinoid receptors in rats. Drug Alcohol Depend 194:20–27

    Article  CAS  PubMed  Google Scholar 

  • Ferre S, Guix T, Prat G, Jane F, Casas M (1990) Is experimental catalepsy properly measured? Pharmacol Biochem Behav 35(4):753–757

    Article  CAS  PubMed  Google Scholar 

  • Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice ASC (2021) Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain 162(Suppl 1):S5–S25

    CAS  PubMed  Google Scholar 

  • Gallily R, Yekhtin Z, Hanuš LO (2015) Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacology & Pharmacy 6(02):75

    Article  Google Scholar 

  • Gomes FV, Del Bel EA, Guimaraes FS (2013) Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice. Prog Neuropsychopharmacol Biol Psychiatry 46:43–47

    Article  CAS  PubMed  Google Scholar 

  • Grotenhermen F (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42(4):327–360

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes FS, Chiaretti TM, Graeff FG, Zuardi AW (1990) Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 100(4):558–559

    Article  CAS  PubMed  Google Scholar 

  • Henderson-Redmond AN, Sepulveda DE, Ferguson EL, Kline AM, Piscura MK, Morgan DJ (2021) Sex-specific mechanisms of tolerance for the cannabinoid agonists CP55,940 and delta-9-tetrahydrocannabinol (Delta(9)-THC). Psychopharmacology (Berl)

  • Hlozek T, Uttl L, Kaderabek L, Balikova M, Lhotkova E, Horsley RR, Novakova P, Sichova K, Stefkova K, Tyls F, Kuchar M, Palenicek T (2017) Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur Neuropsychopharmacol 27(12):1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Javadi-Paydar M, Nguyen JD, Kerr TM, Grant Y, Vandewater SA, Cole M, Taffe MA (2018) Effects of Delta9-THC and cannabidiol vapor inhalation in male and female rats. Psychopharmacology 235(9):2541–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javadi-Paydar M, Creehan KM, Kerr TM, Taffe MA (2019) Vapor inhalation of cannabidiol (CBD) in rats. Pharmacol Biochem Behav 184:172741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus CHA, Redivo DDB, Gasparin AT, Sotomaior BB, de Carvalho MC, Genaro K, Zuardi AW, Hallak JEC, Crippa JA, Zanoveli JM, da Cunha JM (2019) Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors. Brain Res 1715:156–164

    Article  CAS  PubMed  Google Scholar 

  • King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, Ward SJ (2017) Single and combined effects of Delta(9) -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol 174(17):2832–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse LC, Cao JK, Viray K, Stella N, Clark JJ (2019) Voluntary oral consumption of Delta(9)-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology 44(8):1406–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linher-Melville K, Zhu YF, Sidhu J, Parzei N, Shahid A, Seesankar G, Ma D, Wang Z, Zacal N, Sharma M, Parihar V, Zacharias R, Singh G (2020) Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Delta9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination. PLoS One 15(6), e0234176.

  • Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T (2010) A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol 13(7):861–876

    Article  CAS  PubMed  Google Scholar 

  • Lunn S, Diaz P, O’Hearn S, Cahill SP, Blake A, Narine K, Dyck JRB (2019) Human pharmacokinetic parameters of orally administered Delta(9)-tetrahydrocannabinol capsules are altered by fed versus fasted conditions and sex differences. Cannabis Cannabinoid Res 4(4):255–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshell R, Kearney-Ramos T, Brents LK, Hyatt WS, Tai S, Prather PL, Fantegrossi WE (2014) In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Delta9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol Biochem Behav 124:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40(3):471–478

    Article  CAS  PubMed  Google Scholar 

  • Marusich JA, Lefever TW, Antonazzo KR, Craft RM, Wiley JL (2014) Evaluation of sex differences in cannabinoid dependence. Drug Alcohol Depend 137:20–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Metna-Laurent M, Mondesir M, Grel A, Vallee M, Piazza PV (2017) Cannabinoid-induced tetrad in mice. Curr Protoc Neurosci 80, 9 59 51–59 59 10

  • Mlost J, Bryk M, Starowicz K (2020) Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. Int J Mol Sci 21(22)

  • Moore CF, Davis CM, Harvey EL, Taffe MA, Weerts EM (2021) Appetitive, antinociceptive, and hypothermic effects of vaped and injected Delta-9-tetrahydrocannabinol (THC) in rats: exposure and dose-effect comparisons by strain and sex. Pharmacol Biochem Behav 202:173116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadulski T, Pragst F, Weinberg G, Roser P, Schnelle M, Fronk EM, Stadelmann AM (2005) Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of Delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  • Newmeyer MN, Swortwood MJ, Andersson M, Abulseoud OA, Scheidweiler KB, Huestis MA (2017) Cannabis edibles: blood and oral fluid cannabinoid pharmacokinetics and evaluation of oral fluid screening devices for predicting delta(9)-tetrahydrocannabinol in blood and oral fluid following Cannabis Brownie Administration. Clin Chem 63(3):647–662

    Article  CAS  PubMed  Google Scholar 

  • Nguyen JD, Aarde SM, Vandewater SA, Grant Y, Stouffer DG, Parsons LH, Cole M, Taffe MA (2016) Inhaled delivery of Delta(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Neuropharmacology 109:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen JD, Grant Y, Kerr TM, Gutierrez A, Cole M, Taffe MA (2018) Tolerance to hypothermic and antinoceptive effects of 9-tetrahydrocannabinol (THC) vapor inhalation in rats. Pharmacol Biochem Behav 172:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott WR, Gold LH, Martin BR (1992) Evidence for separate neuronal mechanisms for the discriminative stimulus and catalepsy induced by delta 9-THC in the rat. Psychopharmacology 107(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Puighermanal E, Busquets-Garcia A, Gomis-Gonzalez M, Marsicano G, Maldonado R, Ozaita A (2013) Dissociation of the pharmacological effects of THC by mTOR blockade. Neuropsychopharmacology 38(7):1334–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock EM, Connolly C, Limebeer CL, Parker LA (2016) Effect of combined oral doses of Delta(9)-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models. Psychopharmacology 233(18):3353–3360

    Article  CAS  PubMed  Google Scholar 

  • Rohleder C, Pahlisch F, Graf R, Endepols H, Leweke FM (2020) Different pharmaceutical preparations of Delta(9) -tetrahydrocannabinol differentially affect its behavioral effects in rats. Addict Biol 25(3), e12745

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102(5):748–759

    Article  CAS  PubMed  Google Scholar 

  • Sanudo-Pena MC, Romero J, Seale GE, Fernandez-Ruiz JJ, Walker JM (2000) Activational role of cannabinoids on movement. Eur J Pharmacol 391(3):269–274

    Article  CAS  PubMed  Google Scholar 

  • Sofia RD, Vassar HB, Knobloch LC (1975) Comparative analgesic activity of various naturally occurring cannabinoids in mice and rats. Psychopharmacologia 40(4):285–295

    Article  CAS  PubMed  Google Scholar 

  • Spindle TR, Bonn-Miller MO, Vandrey R (2019) Changing landscape of cannabis: novel products, formulations, and methods of administration. Curr Opin Psychol 30:98–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Taffe MA, Creehan KM, Vandewater SA (2015) Cannabidiol fails to reverse hypothermia or locomotor suppression induced by Delta(9) -tetrahydrocannabinol in Sprague-Dawley rats. Br J Pharmacol 172(7):1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai S, Hyatt WS, Gu C, Franks LN, Vasiljevik T, Brents LK, Prather PL, Fantegrossi WE (2015) Repeated administration of phytocannabinoid Delta(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacol Res 102:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng AH, Craft RM (2001) Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol 430(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Varvel SA, Wiley JL, Yang R, Bridgen DT, Long K, Lichtman AH, Martin BR (2006) Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology 186(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Wakley AA, Wiley JL, Craft RM (2014) Sex differences in antinociceptive tolerance to delta-9-tetrahydrocannabinol in the rat. Drug Alcohol Depend 143:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M (1983) Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin Pharmacol Ther 34(3):352–363

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Burston JJ (2014) Sex differences in Delta(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci Lett 576:51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley JL, Barrus DG, Farquhar CE, Lefever TW, Gamage TF (2021) Sex, species and age: effects of rodent demographics on the pharmacology of (9)-tetrahydrocanabinol. Prog Neuropsychopharmacol Biol Psychiatry 106:110064

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, O'Connell MM, Tokarz ME, Wright MJ Jr (2007) Pharmacological effects of acute and repeated administration of Delta(9)-tetrahydrocannabinol in adolescent and adult rats. J Pharmacol Exp Ther 320(3), 1097-1105

  • Zgair A, Wong JC, Lee JB, Mistry J, Sivak O, Wasan KM, Hennig IM, Barrett DA, Constantinescu CS, Fischer PM, Gershkovich P (2016) Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am J Transl Res 8(8):3448–3459

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

All experiments were supported by the National Institute on Drug Abuse of the National Institutes of Health grant numbers R21DA046154 (EW) and the Johns Hopkins University Dalio Fund in Decision Making and the Neuroscience of Motivated Behaviors (EW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine F. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Special Issue on Cannabis and Cannabinoids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, C.F., Weerts, E.M. Cannabinoid tetrad effects of oral Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in male and female rats: sex, dose-effects and time course evaluations. Psychopharmacology 239, 1397–1408 (2022). https://doi.org/10.1007/s00213-021-05995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05995-5

Keywords

Navigation