Skip to main content

Advertisement

Log in

Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acrylamide, a soft electrophile, is widely used in the industry and laboratories, and also contaminates certain foods. Neurotoxicity and neurodegenerative effects of acrylamide have been reported in humans and experimental animals, although the underlying mechanism remains obscure. Activation of microglia and neuroinflammation has been demonstrated in various neurodegenerative diseases as well as other pathologies of the brain. The present study aimed to investigate the role of microglial activation and neuroinflammation in acrylamide neurotoxicity. Male 10-week-old Wistar rats were exposed to acrylamide by gavage at 0, 0.2, 2, or 20 mg/kg BW, once per day for 5 weeks. The results showed that 5-week exposure to acrylamide induced inflammatory responses in the cerebral cortex, evident by upregulated mRNA and protein expression of pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Acrylamide also induced activation of microglia, indicated by increased expression of microglial markers, CD11b and CD40, and increased CD11b/c-positive microglial area and microglial process length. In vitro studies using BV-2 microglial cells confirmed microglial inflammatory response, as evident by time- (0–36 h; 50 μM) and dose- (0–500 μM; 24 h) dependent increase in mRNA expression of IL-1β and IL-18, as well as the inflammatory marker iNOS. Furthermore, acrylamide-induced upregulation of pro-inflammatory cytokines was mediated through the NLRP3 inflammasome pathway, as evident by increased expression of NLRP3, caspase 1, and ASC in the rat cerebral cortex, and by the inhibitory effects of NLRP3 inflammasome inhibitor on the acrylamide-induced upregulation of NLRP3, caspase 1, IL-1β, and IL-18 in BV-2 microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramsson-Zetterberg L, Wong J, Ilbäck NG (2005) Acrylamide tissue distribution and genotoxic effects in a common viral infection in mice. Toxicology 211:70–76

    Article  CAS  Google Scholar 

  • Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2012) Toxicological profile for acrylamide. U.S. Department of Health and Human Services. Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp203.pdf. Accessed 9 May 2019

  • Basu A, Krady JK, Levison SW (2004) Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res 78:151–156

    Article  CAS  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  Google Scholar 

  • Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132

    Article  CAS  Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W et al (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20

    Article  CAS  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    Article  CAS  Google Scholar 

  • Campbell IL (2005) Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS. Brain Res Rev 48:166–177

    Article  CAS  Google Scholar 

  • Campbell IL, Abraham CR, Masliah E et al (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci 90:10061–10065

    Article  CAS  Google Scholar 

  • Chen JH, Chou CC (2015) Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem Toxicol 82:27–35

    Article  CAS  Google Scholar 

  • Chen K, Huang J, Gong W et al (2006) CD40/CD40L dyad in the inflammatory and immune responses in the central nervous system. Cell Mol Immunol 3:163–169

    CAS  PubMed  Google Scholar 

  • Coll RC, Robertson AAB, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255

    Article  CAS  Google Scholar 

  • Deng H, He F, Zhang S et al (1993) Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int Arch Occup Environ Health 65:53–56

    Article  CAS  Google Scholar 

  • Doerge DR, Young JF, McDaniel LP, Twaddle NC, Churchwell MI (2005) Toxicokinetics of acrylamide and glycidamide in Fischer 344 rats. Toxicol Appl Pharm 208:199–209

    Article  CAS  Google Scholar 

  • Erkekoglu P, Baydar T (2014) Acrylamide neurotoxicity. Nutr Neurosci 17:49–57

    Article  CAS  Google Scholar 

  • Felderhoff-Mueser U, Sifringer M, Polley O et al (2005) Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 57:50–59

    Article  CAS  Google Scholar 

  • Freeman LC, Ting JPY (2016) The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem 136:29–38

    Article  CAS  Google Scholar 

  • Garland TO, Patterson MWH (1967) Six cases of acrylamide poisoning. BMJ 4:134–138

    Article  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  Google Scholar 

  • Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615

    Article  CAS  Google Scholar 

  • He FS, Zhang SL, Wang HL et al (1989) Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand J Work Environ Health 15:125–129

    Article  CAS  Google Scholar 

  • Heneka MT, McManus RM, Latz E (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19:610–621

    Article  CAS  Google Scholar 

  • Henn A, Lund S, Hedtjärn M et al (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26:83–94

    Article  Google Scholar 

  • Hennig P, Garstkiewicz M, Grossi S et al (2018) The crosstalk between Nrf2 and inflammasomes. Int J Mol Sci 19:1–19

    Article  Google Scholar 

  • Jin X, Yamashita T (2016) Microglia in central nervous system repair after injury. J Biochem 159:491–496

    Article  CAS  Google Scholar 

  • Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8:2980–3018

    Article  Google Scholar 

  • Kumagai Y, Abiko Y (2017) Environmental electrophiles: protein adducts, modulation of redox signaling, and interaction with persulfides/polysulfides. Chem Res Toxicol 30:203–219

    Article  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  Google Scholar 

  • Li S, Cui N, Zhang C et al (2006) Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology 217:46–53

    Article  CAS  Google Scholar 

  • LoPachin RM (2004) The changing view of acrylamide neurotoxicity. Neurotoxicology 25:617–630

    Article  CAS  Google Scholar 

  • LoPachin RM, Barber DS (2006) Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxicol Sci 94:240–255

    Article  CAS  Google Scholar 

  • LoPachin RM, Gavin T (2008) Acrylamide-induced nerve terminal damage: relevance to neurotoxic and neurodegenerative mechanisms. J Agric Food Chem 56:5994–6003

    Article  CAS  Google Scholar 

  • LoPachin RM, Gavin T (2012) Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ Health Perspect 120:1650–1657

    Article  CAS  Google Scholar 

  • LoPachin RM, Ross JF, Reid ML et al (2002) Neurological evaluation of toxic axonopathies in rats: acrylamide and 2,5-hexanedione. Neurotoxicology 23:95–110

    Article  CAS  Google Scholar 

  • LoPachin RM, Gavin T, Decaprio A, Barber DS (2012) Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chem Res Toxicol 25:239–251

    Article  CAS  Google Scholar 

  • Marlowe C, Clark MJ, Mast RW et al (1986) The distribution of [14C]acrylamide in male and pregnant Swiss-Webster mice studied by whole-body autoradiography. Toxicol Appl Pharmacol 86:457–465

    Article  CAS  Google Scholar 

  • Na KS, Jung HY, Kim YK (2014) The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 48:277–286

    Article  CAS  Google Scholar 

  • O’Sullivan JB, Ryan KM, Curtin NM et al (2009) Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int J Neuropsychopharmacol 12:687–699

    Article  Google Scholar 

  • Oono M, Okado-Matsumoto A, Shodai A et al (2014) Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem 128:403–418

    Article  CAS  Google Scholar 

  • Owens T, Babcock AA, Millward JM, Toft-Hansen H (2005) Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Rev 48:178–184

    Article  CAS  Google Scholar 

  • Pennisi M, Malaguarnera G, Puglisi V et al (2013) Neurotoxicity of acrylamide in exposed workers. Int J Environ Res Public Health 10:3843–3854

    Article  Google Scholar 

  • Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612

    Article  CAS  Google Scholar 

  • Ramsey JC, Young JD, Gorzinsky SJ (1984) Acrylamide: toxicodynamics in rats. Submitted to the US Environmental Protection Agency under TSCA Section 4. OTS0507270. [Unpublished study for peer review]

  • Reinoso RF, Telfer BA, Rowland M (1997) Tissue water content in rats measured by desiccation. J Pharm Toxicol Methods 38:87–92

    Article  CAS  Google Scholar 

  • Rotshenker S (2003) Microglia and macrophage activation and the regulation of complement-receptor-3 (CR46/MAC-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 21:65–72

    Article  CAS  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  Google Scholar 

  • Song L, Pei L, Yao S et al (2017) NLRP3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 11:1–17

    Google Scholar 

  • Stansley B, Post J, Hensley K (2012) A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflamm 9:577

    Article  Google Scholar 

  • Stow JL, Murray RZ (2013) Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 24:227–239

    Article  CAS  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:1–4

    Article  Google Scholar 

  • Subramanian K, Mohideen SS, Suzumura A et al (2012) Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 302:18–24

    Article  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P et al (2000) Acrylamide: a cooking carcinogen? Chem Res Toxicol 13:517–522

    Article  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P et al (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  • Urban M, Kavvadias D, Riedel K et al (2006) Urinary mercapturic acids and a hemoglobin adduct for the dosimetry of acrylamide exposure in smokers and nonsmokers. Inhal Toxicol 18:831–839

    Article  CAS  Google Scholar 

  • Van Everbroeck B, Dewulf E, Pals P et al (2002) The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt–Jakob disease. Neurobiol Aging 23:59–64

    Article  Google Scholar 

  • Virk-Baker MK, Nagy TR, Barnes S, Groopman J (2014) Dietary acrylamide and human cancer: a systematic review of literature. Nutr Cancer 66:774–790

    Article  CAS  Google Scholar 

  • Wang W, Tan M, Yu J, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:1–15

    CAS  Google Scholar 

  • Yang TT, Lin C, Hsu CT et al (2013) Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct Funct 218:1051–1060

    Article  CAS  Google Scholar 

  • Zhang L, Geohagen BC, Gavin T, LoPachin RM (2016) Joint toxic effects of the type-2 alkene electrophiles. Chem Biol Interact 254:198–206

    Article  CAS  Google Scholar 

  • Zhao M, Lewis Wang FS, Hu X et al (2017) Acrylamide-induced neurotoxicity in primary astrocytes and microglia: roles of the Nrf2-ARE and NF-κB pathways. Food Chem Toxicol 106:25–35

    Article  Google Scholar 

  • Zhou K, Shi L, Wang Y et al (2016) Recent advances of the nLRP3 inflammasome in central nervous system disorders. J Immunol Res 2016:1–9

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas (#17H06396) and for Scientific Research (B) (#16H02965), Japan Society for the Promotion of Science. The authors would like to thank Ms. Satoko Arai for the excellent secretarial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Ichihara.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C., Hasegawa, R., Urushitani, M. et al. Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Arch Toxicol 93, 2007–2019 (2019). https://doi.org/10.1007/s00204-019-02471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02471-0

Keywords

Navigation