Skip to main content
Log in

Lactate Protects Microglia and Neurons from Oxygen–Glucose Deprivation/Reoxygenation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available upon reasonable request.

Abbreviations

3,5-DHBA:

3,5-Dihydroxybenzoic acid

4-CIN:

ɑ-Cyano-4-hydroxycinnamic acid

ANLS:

Astrocyte-neuron lactate shuttle

ATP:

Adenosine triphosphate

BCECF-AM:

Acetoxymethyl ester of 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein

cAMP:

Cyclic adenosine monophosphate

CD206:

Cluster of differentiation 206, mannose receptor

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle Medium

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

GPR81:

G protein-coupled-receptor 81

HCAR1:

Hydroxy-carboxylic acid receptor 1

HCl:

Hydrochloric acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HIF-1α:

Hypoxia inducible factor-1, subunit alpha

OGD:

Oxygen and glucose deprivation

OGD/R:

Oxygen and glucose deprivation-reoxygenation

MCT:

Monocarboxylate transporter

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAD+ :

Nicotinamide adenine dinucleotide, oxidized form

NADH:

Nicotinamide adenine dinucleotide, reduced form

NEFL:

Neurofilament light polypeptide

NF-κB:

Nuclear factor kappa B

NLRP3:

Nod-like receptor protein 3

pHi:

Intracellular potential of hydrogen

P/S:

Penicillin/streptomycin

PBS:

Phosphate-buffer saline

PKA:

Protein kinase A

RA:

Retinoic acid

RT:

Room temperature

TNF-α:

Tumor necrosis factor-alpha

References

  1. Berthet C, Lei H, Thevenet J et al (2009) Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 29:1780–1789. https://doi.org/10.1038/jcbfm.2009.97

    Article  CAS  PubMed  Google Scholar 

  2. Hamdy N, Eide S, Sun H-S, Feng Z-P (2020) Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 334:113457. https://doi.org/10.1016/j.expneurol.2020.113457

    Article  PubMed  Google Scholar 

  3. Tassinari IDÁ, Andrade MKG, da Rosa LA et al (2020) Lactate administration reduces brain injury and ameliorates behavioral outcomes following neonatal hypoxia–ischemia. Neuroscience 448:191–205. https://doi.org/10.1016/j.neuroscience.2020.09.006

    Article  CAS  PubMed  Google Scholar 

  4. Roumes H, Dumont U, Sanchez S et al (2021) Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 41:342–358. https://doi.org/10.1177/0271678X20908355

    Article  CAS  PubMed  Google Scholar 

  5. Azevedo PN, Zanirati G, Venturin GT et al (2020) Long-term changes in metabolic brain network drive memory impairments in rats following neonatal hypoxia-ischemia. Neurobiol Learn Mem 171:107207. https://doi.org/10.1016/j.nlm.2020.107207

    Article  CAS  PubMed  Google Scholar 

  6. Buscemi L, Blochet C, Magistretti PJ, Hirt L (2021) Hydroxycarboxylic acid receptor 1 and neuroprotection in a mouse model of cerebral ischemia-reperfusion. Front Physiol 12:689239. https://doi.org/10.3389/fphys.2021.689239

    Article  PubMed  PubMed Central  Google Scholar 

  7. You Q, Lan X-B, Liu N et al (2023) Neuroprotective strategies for neonatal hypoxic-ischemic brain damage: current status and challenges. Eur J Pharmacol 957:176003. https://doi.org/10.1016/j.ejphar.2023.176003

    Article  CAS  PubMed  Google Scholar 

  8. Molloy EJ, Branagan A, Hurley T et al (2023) Neonatal encephalopathy and hypoxic-ischemic encephalopathy: moving from controversy to consensus definitions and subclassification. Pediatr Res. https://doi.org/10.1038/s41390-023-02775-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deng Q, Wu C, Liu TC-Y et al (2023) Exogenous lactate administration: a potential novel therapeutic approach for neonatal hypoxia-ischemia. Exp Neurol. https://doi.org/10.1016/j.expneurol.2023.114450

    Article  PubMed  Google Scholar 

  10. Szrejder M, Typiak M, Pikul P et al (2023) Role of l-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions. Eur J Cell Biol 102:151298. https://doi.org/10.1016/j.ejcb.2023.151298

    Article  CAS  PubMed  Google Scholar 

  11. Bouzat P, Oddo M (2014) Lactate and the injured brain: friend or foe? Curr Opin Crit Care 20:133–140. https://doi.org/10.1097/MCC.0000000000000072

    Article  PubMed  Google Scholar 

  12. Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A et al (2019) L-Lactate promotes adult hippocampal neurogenesis. Front Neurosci 13:403. https://doi.org/10.3389/fnins.2019.00403

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kitaoka Y, Takahashi K, Hatta H (2022) Inhibition of monocarboxylate transporters (MCT) 1 and 4 reduces exercise capacity in mice. Physiol Rep 10:e15457. https://doi.org/10.14814/phy2.15457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korol DL, Gardner RS, Tunur T, Gold PE (2019) Involvement of lactate transport in two object recognition tasks that require either the hippocampus or striatum. Behav Neurosci 133:176–187. https://doi.org/10.1037/bne0000304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manosalva C, Quiroga J, Hidalgo AI et al (2021) Role of lactate in inflammatory processes: friend or foe. Front Immunol 12:808799. https://doi.org/10.3389/fimmu.2021.808799

    Article  CAS  PubMed  Google Scholar 

  16. Zhang M, Wang Y, Bai Y et al (2022) Monocarboxylate transporter 1 may benefit cerebral ischemia via facilitating lactate transport from glial cells to neurons. Front Neurol 13:781063. https://doi.org/10.3389/fneur.2022.781063

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kong L, Wang Z, Liang X et al (2019) Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflamm 16:240. https://doi.org/10.1186/s12974-019-1648-4

    Article  CAS  Google Scholar 

  18. Dias C, Fernandes E, Barbosa RM et al (2023) Astrocytic aerobic glycolysis provides lactate to support neuronal oxidative metabolism in the hippocampus. BioFactors. https://doi.org/10.1002/biof.1951

    Article  PubMed  Google Scholar 

  19. Pierre K, Pellerin L, Debernardi R et al (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627. https://doi.org/10.1016/s0306-4522(00)00294-3

    Article  CAS  PubMed  Google Scholar 

  20. Rafiki A, Boulland JL, Halestrap AP et al (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122:677–688. https://doi.org/10.1016/S0306-4522(03)00654-7

    Article  CAS  PubMed  Google Scholar 

  21. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x

    Article  CAS  PubMed  Google Scholar 

  22. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  23. Bittar PG, Charnay Y, Pellerin L et al (1996) Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16:1079–1089. https://doi.org/10.1097/00004647-199611000-00001

    Article  CAS  PubMed  Google Scholar 

  24. Laughton JD, Bittar P, Charnay Y et al (2007) Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase. BMC Neurosci 8:35. https://doi.org/10.1186/1471-2202-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debernardi R, Pierre K, Lengacher S et al (2003) Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. J Neurosci Res 73:141–155. https://doi.org/10.1002/jnr.10660

    Article  CAS  PubMed  Google Scholar 

  26. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629. https://doi.org/10.1073/pnas.91.22.10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosafio K, Castillo X, Hirt L, Pellerin L (2016) Cell-specific modulation of monocarboxylate transporter expression contributes to the metabolic reprograming taking place following cerebral ischemia. Neuroscience 317:108–120. https://doi.org/10.1016/j.neuroscience.2015.12.052

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Jia P, Wang K et al (2023) Lactate modulates microglial inflammatory responses after oxygen-glucose deprivation through HIF-1α-mediated inhibition of NF-κB. Brain Res Bull 195:1–13. https://doi.org/10.1016/j.brainresbull.2023.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. https://doi.org/10.1038/nm.4397

    Article  CAS  PubMed  Google Scholar 

  30. Liddelow SA, Marsh SE, Stevens B (2020) Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol 41:820–835. https://doi.org/10.1016/j.it.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  31. Colucci ACM, Tassinari ID, da Silveira Loss E, de Fraga LS (2023) History and function of the lactate receptor GPR81/HCAR1 in the brain: a putative therapeutic target for the treatment of cerebral ischemia. Neuroscience 526:144–163. https://doi.org/10.1016/j.neuroscience.2023.06.022

    Article  CAS  PubMed  Google Scholar 

  32. Tassinari ID, de Fraga LS (2022) Potential use of lactate for the treatment of neonatal hypoxic-ischemic encephalopathy. Neural Regen Res 17:788–790. https://doi.org/10.4103/1673-5374.322459

    Article  CAS  PubMed  Google Scholar 

  33. Hoque R, Farooq A, Ghani A et al (2014) Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146:1763–1774. https://doi.org/10.1053/j.gastro.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  34. Yang K, Xu J, Fan M et al (2020) Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol 11:587913. https://doi.org/10.3389/fimmu.2020.587913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laroche S, Stil A, Germain P et al (2021) Participation of l-lactate and its receptor HCAR1/GPR81 in neurovisual development. Cells. https://doi.org/10.3390/cells10071640

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vohra R, Sanz-Morello B, Tams ALM et al (2022) Prevention of cell death by activation of hydroxycarboxylic acid receptor 1 (GPR81) in retinal explants. Cells. https://doi.org/10.3390/cells11132098

    Article  PubMed  PubMed Central  Google Scholar 

  37. Griego E, Galván EJ (2023) BDNF and lactate as modulators of hippocampal CA3 network physiology. Cell Mol Neurobiol 43:4007–4022. https://doi.org/10.1007/s10571-023-01425-6

    Article  CAS  PubMed  Google Scholar 

  38. Vohra R, Aldana BI, Waagepetersen H et al (2019) Dual properties of lactate in Müller cells: the effect of GPR81 activation. Investig Ophthalmol Vis Sci 60:999–1008. https://doi.org/10.1167/iovs.18-25458

    Article  CAS  Google Scholar 

  39. Herrera-López G, Griego E, Galván EJ (2020) Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS ONE 15:e0242309. https://doi.org/10.1371/journal.pone.0242309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scavuzzo CJ, Rakotovao I, Dickson CT (2020) Differential effects of l-and d-lactate on memory encoding and consolidation: potential role of HCAR1 signaling. Neurobiol Learn Mem 168:107151. https://doi.org/10.1016/j.nlm.2019.107151

    Article  CAS  PubMed  Google Scholar 

  41. Buscemi L, Price M, Castillo-González J et al (2022) Lactate neuroprotection against transient ischemic brain injury in mice appears independent of HCAR1 activation. Metabolites. https://doi.org/10.3390/metabo12050465

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nicola R, Madar R, Okun E (2022) HCAR1-mediated l-lactate signaling suppresses microglial phagocytosis. Neuromol Med 24:399–404. https://doi.org/10.1007/s12017-022-08710-5

    Article  CAS  Google Scholar 

  43. Kennedy L, Glesaaen ER, Palibrk V et al (2022) Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife. https://doi.org/10.7554/eLife.76451

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harun-Or-Rashid M, Inman DM (2018) Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflamm 15:313. https://doi.org/10.1186/s12974-018-1346-7

    Article  CAS  Google Scholar 

  45. Ahmed ME, Selvakumar GP, Kempuraj D et al (2019) Synergy in disruption of mitochondrial dynamics by Aβ (1-42) and glia maturation factor (GMF) in SH-SY5Y cells is mediated through alterations in fission and fusion proteins. Mol Neurobiol 56:6964–6975. https://doi.org/10.1007/s12035-019-1544-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de-Brito NM, Duncan-Moretti J, da-Costa HC et al (2020) Aerobic glycolysis is a metabolic requirement to maintain the M2-like polarization of tumor-associated macrophages. Biochim Biophys Acta 1867:118604. https://doi.org/10.1016/j.bbamcr.2019.118604

    Article  CAS  Google Scholar 

  47. Lee S-P, Chao S-C, Huang S-F et al (2018) Expressional and functional characterization of intracellular pH regulators and effects of ethanol in human oral epidermoid carcinoma cells. Cell Physiol Biochem 47:2056–2068. https://doi.org/10.1159/000491473

    Article  CAS  PubMed  Google Scholar 

  48. Halcrow P, Khan N, Datta G et al (2019) Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. https://doi.org/10.1002/cnr2.1193

    Article  PubMed Central  Google Scholar 

  49. Paik S, Somvanshi RK, Kumar U (2019) Somatostatin-mediated changes in microtubule-associated proteins and retinoic acid-induced neurite outgrowth in SH-SY5Y cells. J Mol Neurosci 68:120–134. https://doi.org/10.1007/s12031-019-01291-2

    Article  CAS  PubMed  Google Scholar 

  50. Wölfle U, Haarhaus B, Kersten A et al (2015) Salicin from willow bark can modulate neurite outgrowth in human neuroblastoma SH-SY5Y cells. Phytother Res 29:1494–1500. https://doi.org/10.1002/ptr.5400

    Article  CAS  PubMed  Google Scholar 

  51. Cruz E, Bessières B, Magistretti P, Alberini CM (2022) Differential role of neuronal glucose and PFKFB3 in memory formation during development. Glia 70:2207–2231. https://doi.org/10.1002/glia.24248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744:105–111. https://doi.org/10.1016/s0006-8993(96)01106-7

    Article  CAS  PubMed  Google Scholar 

  53. Wohnsland S, Bürgers HF, Kuschinsky W, Maurer MH (2010) Neurons and neuronal stem cells survive in glucose-free lactate and in high glucose cell culture medium during normoxia and anoxia. Neurochem Res 35:1635–1642. https://doi.org/10.1007/s11064-010-0224-1

    Article  CAS  PubMed  Google Scholar 

  54. Monsorno K, Ginggen K, Ivanov A et al (2023) Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 14:1–18. https://doi.org/10.1038/s41467-023-41502-4

    Article  CAS  Google Scholar 

  55. McKenna MC, Hopkins IB, Carey A (2001) Alpha-cyano-4-hydroxycinnamate decreases both glucose and lactate metabolism in neurons and astrocytes: implications for lactate as an energy substrate for neurons. J Neurosci Res 66:747–754. https://doi.org/10.1002/jnr.10084

    Article  CAS  PubMed  Google Scholar 

  56. Dovmark TH, Saccomano M, Hulikova A et al (2017) Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene 36:4538–4550. https://doi.org/10.1038/onc.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sotelo-Hitschfeld T, Niemeyer MI, Mächler P et al (2015) Channel-mediated lactate release by K+-stimulated astrocytes. J Neurosci 35:4168–4178. https://doi.org/10.1523/JNEUROSCI.5036-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Descalzi G, Gao V, Steinman MQ et al (2019) Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun Biol 2:247. https://doi.org/10.1038/s42003-019-0495-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang J, Yuan S, Jian Y et al (2023) Aerobic exercise regulates GPR81 signal pathway and mediates complement-microglia axis homeostasis on synaptic protection in the early stage of Alzheimer’s disease. Life Sci. https://doi.org/10.1016/j.lfs.2023.122042

    Article  PubMed  Google Scholar 

  60. Brooks GA (2020) Lactate as a fulcrum of metabolism. Redox Biol 35:101454. https://doi.org/10.1016/j.redox.2020.101454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robergs RA, McNulty CR, Minett GM et al (2018) Lactate, not lactic acid, is produced by cellular cytosolic energy catabolism. Physiology 33:10–12

    Article  CAS  PubMed  Google Scholar 

  62. Blixt J, Song Y, Wanecek M, Gunnarson E (2023) EPO has multiple positive effects on astrocytes in an experimental model of ischemia. Brain Res 1802:148207. https://doi.org/10.1016/j.brainres.2022.148207

    Article  CAS  PubMed  Google Scholar 

  63. Beppu K, Sasaki T, Tanaka KF et al (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314–320. https://doi.org/10.1016/j.neuron.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  64. Gupta P, Hourigan K, Jadhav S et al (2017) Effect of lactate and pH on mouse pluripotent stem cells: importance of media analysis. Biochem Eng J 118:25–33. https://doi.org/10.1016/j.bej.2016.11.005

    Article  CAS  Google Scholar 

  65. Li H, Wang Y, Wang B et al (2021) Baicalin and geniposide inhibit polarization and inflammatory injury of OGD/R-treated microglia by suppressing the 5-LOX/LTB4 pathway. Neurochem Res 46:1844–1858. https://doi.org/10.1007/s11064-021-03305-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qin X, Sun Z-Q, Zhang X-W et al (2013) TLR4 signaling is involved in the protective effect of propofol in BV2 microglia against OGD/reoxygenation. J Physiol Biochem 69:707–718. https://doi.org/10.1007/s13105-013-0247-6

    Article  CAS  PubMed  Google Scholar 

  67. Zhang B-J, Men X-J, Lu Z-Q et al (2013) Splenectomy protects experimental rats from cerebral damage after stroke due to anti-inflammatory effects. Chin Med J 126:2354–2360. https://doi.org/10.3760/cma.j.issn.0366-6999.20122483

    Article  CAS  PubMed  Google Scholar 

  68. Unsicker C, Cristian F-B, von Hahn M et al (2021) SHANK2 mutations impair apoptosis, proliferation and neurite outgrowth during early neuronal differentiation in SH-SY5Y cells. Sci Rep 11:2128. https://doi.org/10.1038/s41598-021-81241-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martínez M-A, Rodríguez J-L, Lopez-Torres B et al (2020) Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int 135:105414. https://doi.org/10.1016/j.envint.2019.105414

    Article  CAS  PubMed  Google Scholar 

  70. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dravid A, Raos B, Svirskis D, O’Carroll SJ (2021) Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci Rep 11:23935. https://doi.org/10.1038/s41598-021-03442-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raghunath M, Patti R, Bannerman P et al (2000) A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. Brain Res Mol Brain Res 77:151–162. https://doi.org/10.1016/s0169-328x(00)00048-6

    Article  CAS  PubMed  Google Scholar 

  73. Al-Chalabi A, Miller CCJ (2003) Neurofilaments and neurological disease. BioEssays 25:346–355. https://doi.org/10.1002/bies.10251

    Article  CAS  PubMed  Google Scholar 

  74. Gao F, Wu J, Zhou Y et al (2020) An appropriate ratio of unsaturated fatty acids is the constituent of hickory nut extract for neurite outgrowth in human SH-SY5Y cells. Food Sci Nutr 8:6346–6356. https://doi.org/10.1002/fsn3.1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agrawal PB, Joshi M, Marinakis NS et al (2014) Expanding the phenotype associated with the NEFL mutation: neuromuscular disease in a family with overlapping myopathic and neurogenic findings. JAMA Neurol 71:1413–1420. https://doi.org/10.1001/jamaneurol.2014.1432

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hong H, Su J, Zhang Y et al (2023) A novel role of lactate: promotion of Akt-dependent elongation of microglial process. Int Immunopharmacol 119:110136. https://doi.org/10.1016/j.intimp.2023.110136

    Article  CAS  PubMed  Google Scholar 

  77. Li R, Yang Y, Wang H et al (2023) Lactate and lactylation in the brain: current progress and perspectives. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-023-01335-7

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Muri J, Fitzgerald G et al (2020) Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab 31:1136–1153.e7. https://doi.org/10.1016/j.cmet.2020.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chaudhari P, Madaan A, Rivera JC et al (2022) Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J Cereb Blood Flow Metab 42:1294–1308. https://doi.org/10.1177/0271678X221077499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lauritzen KH, Morland C, Puchades M et al (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24:2784–2795. https://doi.org/10.1093/cercor/bht136

    Article  PubMed  Google Scholar 

  81. Morland C, Lauritzen KH, Puchades M et al (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res 93:1045–1055. https://doi.org/10.1002/jnr.23593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to express our gratitude to Dr. Amanda Thomaz from the Division of Biomedical and Life Sciences, Lancaster University, and also to the PhD student, Janaína Zang from the Federal University of Rio Grande do Sul (UFRGS) for their unwavering support in the immunofluorescence experiments.

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), FIOCRUZ Institutional Internationalization Program (CAPES/PrInt-Fiocruz), UFRGS Institutional Internationalization Program (CAPES/PrInt-UFRGS), and Erasmus+ Funding Programme.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: IDT, DAMC, RPG, AHP, VBJ, and LSF. Performed the experiments: IDT, and FSR. Analyzed the data: IDT, FSR, VBJ, and LSF. Data interpretation: IDT, DAMC, RPG, AHP, and LSF. Wrote the first draft of the manuscript: IDT, and LSF. Revised critically the manuscript: CB, DAMC, RPG, and AHP. Grammar review: CB. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Luciano Stürmer de Fraga.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Institutional ethical approval was not required, as the present study used only cell lines, and live animals were not used in the experiments.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassinari, I.D., Rodrigues, F.d., Bertram, C. et al. Lactate Protects Microglia and Neurons from Oxygen–Glucose Deprivation/Reoxygenation. Neurochem Res (2024). https://doi.org/10.1007/s11064-024-04135-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04135-7

Keywords

Navigation