Skip to main content
Log in

Differential distribution and activation of microglia in the brain of male C57BL/6J mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Upon certain stimuli, microglia undergo different degrees of transformation in order to maintain homeostasis of the CNS. However, chronic microglia activation has been suggested to play an active role in the pathogenesis of neurodegenerative diseases. The density of microglia and the degree of microglia activation vary among brain regions; such differences may underlie the brain region-specific characteristics of neurodegenerative diseases. In this study, we aim to characterize the temporal and spatial profiles of microglia activation induced by peripheral inflammation in male C57BL/6J mice. Our results showed that, on average, microglia densities were highest in the cortex, followed by the limbic area, basal nuclei, diencephalon, brainstem and cerebellum. Among the 22 examined brain nuclei/regions, the substantia nigra had the highest microglia density. Microglia morphological changes were evident within 3 h after a single intraperitoneal lipopolysaccharides injection, with the highest degree of changes also in the substantia nigra. The lipopolysaccharide-induced microglia activation, determined by maximal cell size, was positively correlated with density of microglia and levels of TNFα receptor 1; it was not correlated with original microglia cell size or integrity of blood–brain barrier. The differential response of microglia also cannot be explained by different types of neurotransmitters. Our works suggest that the high density of microglia and the high levels of TNFα receptor 1 in the substantia nigra make this brain region the most susceptible area to systemic immunological insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AcbC:

Accumbens nucleus core

Amyg:

Amygdala

BBB:

Blood–brain barrier

BNST:

Bed nucleus of stria terminalis

CA2/3:

CA2/CA3 of hippocampus

Cb ant/post:

Cerebellum anterior lobe/posterior lobe

CNS:

Central nervous system

CPu:

Caudate-putamen (striatum)

DG:

Dentate gyrus of hippocampus

DH:

Dorsal hypothalamus

Iba-1:

Ionized calcium-binding adapter molecule-1

LH:

Lateral hypothalamic

LPAG:

Lateral periaqueductal gray

LPS:

Lipopolysaccharide

MEnt:

Medial entorhinal cortex

MFC:

Medial frontal cortex

PFC:

Prefrontal cortex

Pir:

Piriform cortex

Pn:

Pontine nucleus

SN:

Substantia nigra

SC:

Superior colliculus

S1:

Sensory cortex, trunk region

TNFα:

Tumor-necrosis factor α

TNFR1:

Tumor-necrosis factor receptor 1

VA:

Ventral anterior thalamic nucleus

V1:

Visual cortex

VTA:

Ventral tegmental area

References

  • Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  • Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716

    PubMed  CAS  Google Scholar 

  • Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simburger E, Naftolin F, Dirnagl U, Nitsch R, Priller J (2005) Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 19:647–649

    PubMed  CAS  Google Scholar 

  • Bessis A, Bechade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238

    Article  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  • Britschgi M, Wyss-Coray T (2007) Immune cells may fend off Alzheimer disease. Nat Med 13:408–409

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796

    Article  PubMed  CAS  Google Scholar 

  • D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor α signaling during peripheral organ inflammation. J Neurosci 29:2089–2102

    Article  PubMed  Google Scholar 

  • Freedman FB, Johnson JA (1969) Equilibrium and kinetic properties of the Evans Blue-ablumin system. Am J Physiol 216:675–681

    PubMed  CAS  Google Scholar 

  • Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Haverkamp LJ, Yu JH, Karshin W, Tom D, Li J, Kirkpatrick J, Kuo YM, Roher AE (1996) Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci 16:6021–6037

    PubMed  CAS  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Ji K-A, Eu MY, Kang S-H, Gwag BJ, Jou I, Joe E-H (2008) Differential neutrophil infiltration contributes to regional differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 56:1039–1047

    Article  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  PubMed  CAS  Google Scholar 

  • Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    PubMed  CAS  Google Scholar 

  • Kremlev SG, Roberts RL, Palmer C (2004) Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 149:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33:1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  • Ling E-A, Leblond CP (1973) Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol 149:73–81

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212–218

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Beach T, Walker DG (2010) Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 41:115–128

    Article  PubMed  CAS  Google Scholar 

  • Ma SY, Collan Y, Roytta M, Rinne JO, Rinne UK (1995) Cell counts in the substantia nigra: a comparison of single section counts and disector counts in patients with Parkinson’s disease and in controls. Neuropathol Appl Neurobiol 21:10–17

    Article  PubMed  CAS  Google Scholar 

  • Morgan SC, Taylor DL, Pocock JM (2004) Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90:89–101

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Leblond CP (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–79

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68:325–340

    Article  PubMed  CAS  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin BJK (2001) The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, Edition

    Google Scholar 

  • Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997) Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266

    Article  PubMed  CAS  Google Scholar 

  • Stollg G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  Google Scholar 

  • Sumi N, Nishioku T, Takata F, Matsumoto J, Watanabe T, Shuto H, Yamauchi A, Dohgu S, Kataoka Y (2010) Lipopolysaccharide-activated microglia induce dysfunction of the blood-brain barrier in rat microvascular endothelial cells co-cultured with microglia. Cell Mol Neurobiol 30:247–253

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368

    Article  PubMed  Google Scholar 

  • Vaughan DW, Peters A (1974) Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study. J Neurocytol 3:405–429

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, Wu CW, Kuo YM (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun 25:135–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science council (NSC 99-2320-B-006-017-MY3 and NSC99-2314-B-214-008) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Ting Yang or Yu-Min Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, TT., Lin, C., Hsu, CT. et al. Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Struct Funct 218, 1051–1060 (2013). https://doi.org/10.1007/s00429-012-0446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0446-x

Keywords

Navigation