Skip to main content
Log in

Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe2+ to O2. To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abhilash S, Pandey BD (2011) Role of ferric ions in bioleaching of uranium from low tenor Indian ore. Can Metall Q 50(2):102–112. doi:10.1179/000844311X12949291728050

    Article  CAS  Google Scholar 

  • Abhilash S, Mehta KD, Kumar V, Pandey DB, Tamrakar KP (2011) Bioleaching—an alternate uranium ore processing technology for India. Energy Proced 7:158–162. doi:10.1016/j.egypro.2011.06.021

    Article  Google Scholar 

  • Almárcegui RJ, Navarro CA, Paradela A, Albar JP, Bernath DV, Jerez CA (2014) Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Res Microbiol 165(9):761–772. doi:10.1016/j.resmic.2014.07.005

    Article  PubMed  Google Scholar 

  • Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V (1999) Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65:4781–4787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152. doi:10.1016/S0168-6496(03)00028-X

    Article  CAS  PubMed  Google Scholar 

  • Bengrine A, Guiliani N, Appia-Ayme C, Jedlicki E, Holmes DS, Chippaux M, Bonnefoy V (1998) Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC 33020 strain. Biochim Biophys Acta 1443:99–112. doi:10.1016/S0167-4781(98)00199-7

    Article  CAS  PubMed  Google Scholar 

  • Bruscella P, Appia-Ayme C, Levica´n G, Ratouchniak J, Jedlicki E, Holmes DS, Bonnefoy V (2007) Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology 153:102–110. doi:10.1099/mic.0.2006/000067-0

    Article  CAS  PubMed  Google Scholar 

  • Carlos C, Reis FC, Vicentini R, Madureira DJ, Ottoboni LMM (2008) The rus operon genes are differentially regulated when Acidithiobacillus ferrooxidans LR is kept in contact with metal sulfides. Curr Microbiol 57:375–380. doi:10.1007/s00284-008-9208-7

    Article  CAS  PubMed  Google Scholar 

  • Debabrata P, Dong J, Kim J, Seoung W (2010) Microbial leaching process to recover valuable metals from spent petroleum catalyst using iron oxidizing bacteria. World Acad Sci Eng Technol 4:02–22

    Google Scholar 

  • Dekker L, Arsene-Ploetze F, Santini JM (2016) Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 167:234–239. doi:10.1016/j.resmic.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Lin H, Wang H, Mo X (2011) Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Crit Rev Microbiol Miner Eng 24:870–875. doi:10.1016/j.mineng.2011.03.020

    CAS  Google Scholar 

  • Fatemi F, Rashidi A, Jahani S (2015) Isolation and Identification of native sulfur-oxidizing bacterium capable of uranium extraction. J Sci Univ Tehran Prog Biol Sci 5:207–221

    Google Scholar 

  • Fatemi F, Arabieh M, Jahani S (2016) Application of response surface methodology to optimize uranium biological leaching at high pulp density. Radiochim Acta 104(4):239–246. doi:10.1515/ract-2015-2495

    Article  CAS  Google Scholar 

  • Fatemi F, Jahani S, Miri S (2017) The effect of peptone and tryptic soy broth (TSB) on uranium bioleaching efficiency. J Nucl Sci Technol (in press)

  • Giudici-Orticoni MT, Guerlesquin F, Bruschi M, Nitschke W (1999) Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c 4. J Biol Chem 274:30365–30369. doi:10.1074/jbc.274.43.30365

    Article  CAS  PubMed  Google Scholar 

  • Golmohammadi H, Rashidi A, Safdari SJ (2012) Simple and rapid spectrophotometric method for determination of uranium(VI) in low grade uranium ores using arsenazo(III). Chem Chem Technol 6:245–249

    CAS  Google Scholar 

  • Gomez E, Ballester A, Gonzalez F, Blazquez ML (1999) Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy 52:349–366. doi:10.1016/S0304-386X(99)00027-4

    Article  CAS  Google Scholar 

  • Ingledew WJ (1982) Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683:89–117

    Article  CAS  PubMed  Google Scholar 

  • Jahani S, Fatemi F, Firoz-e-zare MA, Zolfaghari MR (2015) Isolation and characterization of Acidithiobacillus ferrooxidans strain FJS from Ramsar, Iran. Electron J Biol 11(4):138–146

    Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473. doi:10.1016/S0923-2508(03)00114-1

    Article  CAS  PubMed  Google Scholar 

  • Karamanev DG, Nikolov LN, Mamatarkova V (2002) Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner Eng 15(5):341–346. doi:10.1016/S0892-6875(02)00026-2

    Article  CAS  Google Scholar 

  • Kucera J, Bouchal P, Lochman J, Potesil D, Janiczek O, Zdrahal Z, Mandl M (2013) Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis. Antonie Van Leeuwenhoek 103:905–919. doi:10.1007/s10482-012-9872-2

    Article  CAS  PubMed  Google Scholar 

  • Levica´n G, Bruscella P, Guacucano M, Inostroza C, Bonnefoy V, Holmes DS, Jedlicki E (2002) Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184:1498–1501. doi:10.1128/JB.184.5.1498-1501

    Article  Google Scholar 

  • Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 15:250–251. doi:10.1016/j.jhazmat.2013.01.077

    Google Scholar 

  • Lottering JM, Lorenzen L, Phala SN, Smit TJ, Schakwyk CAG (2008) Mineralogy and uranium leaching response of low grade South African ores. Miner Eng 21:16–22. doi:10.1016/j.mineng.2007.06.006

    Article  CAS  Google Scholar 

  • Matlakowska R, Sklodowska A (2006) Adaptive responses of chemolithoautotrophic acidophilic Acidithiobacillus ferrooxidans to sewage sludge. J Appl Microbiol 12:1485–1498. doi:10.1111/j.1365-2672.2006.03208.x

    Google Scholar 

  • Mei Li H, Jun Ke J (2001) Technical note in influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans. Miner Eng 14:113–116. doi:10.1016/S0892-6875(00)00165-5

    Article  Google Scholar 

  • Munoz JA, Gonzales F, Blazquez ML, Ballester A (1995a) A study of the bioleaching of a Spanish uranium ore, part I: a review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy 38:39–57

    Article  CAS  Google Scholar 

  • Munoz JA, Ballester A, Gonzalez F, Blazquez ML (1995b) A study of the bioleaching of spanish uranium ore part II. Orbital shaker experiments. Hydrometallurgy 38:59–78

    Article  CAS  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Ferroni GD, Leduc LG, Foote SJ, Twine SM (2011) Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie Van Leeuwenhoek 100:259–277. doi:10.1007/s10482-011-9584-z

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Tipre D, Dave S (2011) Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2. Bioresour Technol 102:1602–1607. doi:10.1016/j.biortech.2010.08.115

    Article  CAS  PubMed  Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70(8):4491–4498. doi:10.1128/AEM.70.8.4491-4498.2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfuroxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13. doi:10.1186/1475-2859-4-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silver M, Margalith P, Lundgren DG (1967) Effect of glucose on carbon dioxide assimilation and substrate oxidation by Ferrobacillus ferrooxidans. J Bacteriol 77:1765–1769

    Google Scholar 

  • Tuovinen OH, Bhatti TM, Bigham JM, Hallberg KB, Garcia O, Lindstrom EB (1994) Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Appl Environ Microbiol 60:32–68

    Google Scholar 

  • Tuttle JH, Dugan PR (1976) Inhibition of growth, iron and sulphur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Can J Microbiol 22:719–730

    Article  CAS  PubMed  Google Scholar 

  • Xue-ling W, Guan-zhou Q, Jian G, Jian-nan D, Jian K, Xin-xing L (2007) Mutagenic breeding of silver-resistant Acidithiobacillus ferrooxidans and exploration of resistant mechanism. Trans Nonferrous Met Soc China 17:412–417. doi:10.1016/S1003-6326(07)60107-1

    Article  Google Scholar 

  • Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002a) The high-molecular-weight cytochrome c cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317. doi:10.1128/JB.184.1.313-317.2002

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarzábal A, Brasseur G, Bonnefoy V (2002b) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209:189–195. doi:10.1111/j.1574-6968.2002.tb11130.x

    Article  PubMed  Google Scholar 

  • Yarzábal A, Duquesne K, Bonnefoy V (2003) Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur- and in ferrous iron media. Hydrometallurgy 71:107–114

    Article  Google Scholar 

  • Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123. doi:10.1099/mic.0.26966-0

    Article  PubMed  Google Scholar 

  • Yu R, Tan J, Gu G, Hu Y, Qiu G (2010) Mechanism of bioleaching chalcopyrite by Acidithiobacillus ferrooxidansin agar-simulated extracellular polymeric substances media. J Cent South Univ Technol 17:56–61. doi:10.1007/s11771-010-0011-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Fatemi.

Additional information

Communicated by Harald Huber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi, F., Miri, S. & Jahani, S. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2. Arch Microbiol 199, 521–530 (2017). https://doi.org/10.1007/s00203-016-1318-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1318-1

Keywords

Navigation