Skip to main content

Advertisement

Log in

Impact of pioglitazone on bone mineral density and bone marrow fat content

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Pioglitazone use is associated with an increased risk of fractures. In this randomized, placebo-controlled study, pioglitazone use for 12 months was associated with a significant increase in bone marrow fat content at the femoral neck, accompanied by a significant decrease in total hip bone mineral density. The change in bone marrow fat with pioglitazone use was predominantly observed in female vs. male participants.

Introduction

Use of the insulin sensitizer pioglitazone is associated with greater fracture incidence, although the underlying mechanisms are incompletely understood. This study aimed to assess the effect of pioglitazone treatment on femoral neck bone marrow (BM) fat content and on bone mineral density (BMD), and to establish if any correlation exists between the changes in these parameters.

Methods

In this double-blind placebo-controlled clinical trial, 42 obese volunteers with metabolic syndrome were randomized to pioglitazone (45 mg/day) or matching placebo for 1 year. The following measurements were conducted at baseline and during the treatment: liver, pancreas, and femoral neck BM fat content (by magnetic resonance spectroscopy), BMD by DXA, abdominal subcutaneous and visceral fat, and beta-cell function and insulin sensitivity.

Results

Results were available for 37 subjects who completed the baseline and 1-year evaluations. At 12 months, BM fat increased with pioglitazone (absolute change, +4.1%, p = 0.03), whereas BM fat content in the placebo group decreased non-significantly (−3.1%, p = 0.08) (p = 0.007 for the pioglitazone–placebo response difference). Total hip BMD declined in the pioglitazone group (−1.4%) and increased by 0.8% in the placebo group (p = 0.03 between groups). The change in total hip BMD was inversely and significantly correlated with the change in BM fat content (Spearman rho = −0.56, p = 0.01) in the pioglitazone group, but not within the placebo group (rho = −0.29, p = 0.24). Changes in BM fat with pioglitazone were predominantly observed in female vs. male subjects.

Conclusions

Pioglitazone use for 12 months compared with placebo is associated with significant increase in BM fat content at the femoral neck, accompanied by a small but significant decrease in total hip BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118. doi:10.1056/NEJMra041001

    Article  PubMed  Google Scholar 

  2. Olefsky JM (2000) Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest 106:467–472. doi:10.1172/JCI10843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bajaj M, Suraamornkul S, Hardies LJ et al (2004) Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated type II diabetic patients. Int J Obes Relat Metab Disor 28:783–789. doi:10.1038/sj.ijo.0802625

    Article  CAS  Google Scholar 

  4. Tiikkainen M, Hakkinen AM, Korsheninnikova E et al (2004) Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53:2169–2176. doi:10.2337/diabetes.53.8.2169

    Article  CAS  PubMed  Google Scholar 

  5. McGavock JM, Lingvay I, Zib I et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175. doi:10.1161/CIRCULATIONAHA.106.645614

    Article  PubMed  Google Scholar 

  6. Maalouf NM (2015) Impact of anti-hyperglycemic medications on bone health. Clinic Rev Bone Miner Metab 13:43–52

    Article  CAS  Google Scholar 

  7. Kahn SE, Zinman B, Lachin JM et al (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 31:845–851. doi:10.2337/dc07-2270

    Article  CAS  PubMed  Google Scholar 

  8. Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 23:2427–2443. doi:10.1056/NEJMoa066224

    Article  Google Scholar 

  9. FDA. Observation of an increased incidence of fractures in female patients who received long-term treatment with pioglitazone. http://www.fda.gov/downloads/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm153896.pdf

  10. Home PD, Pocock SJ, Beck-Nielsen H et al (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. doi:10.1016/S0140-6736(09)60953-3

    Article  CAS  PubMed  Google Scholar 

  11. Zhu ZN, Jiang YF, Ding T (2014) Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–123. doi:10.1016/j.bone.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  12. Aubert RE, Herrera V, Chen W et al (2010) Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes Metab 12:716–721. doi:10.1111/j.1463-1326.2010.01225.x

    Article  CAS  PubMed  Google Scholar 

  13. Colhoun HM, Livingstone SJ, Looker HC et al (2012) Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 55:2929–2937. doi:10.1007/s00125-012-2668-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406. doi:10.1210/en.2003-0746

    Article  CAS  PubMed  Google Scholar 

  15. Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nature Med 13:1496–1503. doi:10.1038/nm1672

    Article  CAS  PubMed  Google Scholar 

  16. Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310. doi:10.1210/jc.2006-2646

    Article  CAS  PubMed  Google Scholar 

  17. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497

  18. Warshauer J, Lopez X, Gordillo R et al (2015) Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes Metab Res Rev 31:734–744. doi:10.1002/dmrr.2662

    Article  CAS  PubMed  Google Scholar 

  19. Szczepaniak LS et al (1999) Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo. Am J Physiol Endocrinol Metab 276:977–989

    Google Scholar 

  20. Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468. doi:10.1152/ajpendo.00064.2004

    Article  CAS  PubMed  Google Scholar 

  21. Lingvay I, Esser V, Legendre JL et al (2009) Noninvasive quantification of pancreatic fat in humans. J Clin Endocrinol Metab 94:4070–4076. doi:10.1210/jc.2009-0584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Griffith JF, Yeung DK, Chow SK et al (2009) Reproducibility of MR perfusion and 1H spectroscopy of bone marrow. J Magn Reson Imaging 29:1438–1342. doi:10.1002/jmri.21765

    Article  PubMed  Google Scholar 

  23. Billington EO, Grey A, Bolland MJ (2015) The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia 58:2238–2246. doi:10.1007/s00125-015-3660-2

    Article  CAS  PubMed  Google Scholar 

  24. Grey A, Beckley V, Doyle A et al (2012) Pioglitazone increases bone marrow fat in type 2 diabetes: results from a randomized controlled trial. Eur J Endocrinol 166:1087–1091. doi:10.1530/EJE-11-1075

    Article  CAS  PubMed  Google Scholar 

  25. Harsløf T, Wamberg L, Møller L et al (2011) Rosiglitazone decreases bone mass and BM fat. J Clin Endocrinol Metab 96:1541–1548. doi:10.1210/jc.2010-2077

    Article  PubMed  Google Scholar 

  26. Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530. doi:10.1210/jc.2007-0431

    Article  CAS  PubMed  Google Scholar 

  27. Grey A (2009) Thiazolidinedione-induced skeletal fragility–mechanisms and implications. Diab Obes Metab 11:275–284. doi:10.1111/j.1463-1326.2008.00931.x

    Article  CAS  Google Scholar 

  28. Gruntmanis U, Fordan S, Ghayee HK et al (2010) The peroxisome proliferator-activated receptor gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tis Int 86:343–349. doi:10.1007/s00223-010-9352-5

    Article  CAS  Google Scholar 

  29. Bilezikian JP, Josse RG, Eastell R et al (2013) Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 98:1519–1528. doi:10.1210/jc.2012-4018

    Article  CAS  PubMed  Google Scholar 

  30. Bone HG, Lindsay R, McClung MR et al (2013) Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 98:4691–4701. doi:10.1210/jc.2012-4096

    Article  CAS  PubMed  Google Scholar 

  31. Grey A, Bolland M, Fenwick S et al (2014) The skeletal effects of pioglitazone in type 2 diabetes or impaired glucose tolerance: a randomized controlled trial. Eur J Endocrinol 170:255–262. doi:10.1530/EJE-13-0793

    Article  CAS  PubMed  Google Scholar 

  32. Dormandy J, Bhattacharya M, van Troostenburg de Bruyn AR (2009) Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf 32:187–202. doi:10.2165/00002018-200932030-00002

    Article  CAS  PubMed  Google Scholar 

  33. Fazeli PK, Horowitz MC, MacDougald OA et al (2013) Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 98:935–945. doi:10.1210/jc.2012-3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benvenuti S, Cellai I, Luciani P et al (2012) Androgens and estrogens prevent rosiglitazone-induced adipogenesis in human mesenchymal stem cells. J Endocrinol Investig 35:365–371. doi:10.3275/7739

    CAS  Google Scholar 

  35. Seto-Young D, Avtanski D, Parikh G et al (2011) Rosiglitazone and pioglitazone inhibit estrogen synthesis in human granulosa cells by interfering with androgen binding to aromatase. Horm Metab Res 43:250–256. doi:10.1055/s-0030-1270525

    Article  CAS  PubMed  Google Scholar 

  36. Sahi J, Black C, Hamilton G et al (2003) Comparative effects of thiazolidinediones on in vitro p450 enzyme induction and inhibition. Drug Metab Dispos 31:439–446. doi:10.1124/dmd.31.4.439

    Article  CAS  PubMed  Google Scholar 

  37. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124. doi:10.1016/j.canlet.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  38. Hirose JH, Kawai T, Yamamoto Y et al (2002) Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 51:314–317. doi:10.1053/meta.2002.30506

    Article  CAS  PubMed  Google Scholar 

  39. Kudoh A, Satoh H, Hirai H et al (2011) Pioglitazone upregulates adiponectin receptor 2 in 3T3-L1 adipocytes. Life Sci 88:1055–1062. doi:10.1016/j.lfs.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  40. Berner HS, Lyngstadaas SP, Spahr A et al (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849. doi:10.1016/j.bone.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Song CY, Wu SS et al (2013) Novel adipokines and bone metabolism. Int J Endocrinol. doi:10.1155/2013/895045

  42. Takano T, Li YJ, Kukita A et al (2014) Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. Lab Investig 94:286–296. doi:10.1038/labinvest.2013.152

    Article  CAS  PubMed  Google Scholar 

  43. Park JS, Cho MH, Nam JS et al (2011) Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes mellitus. Eur J Endocrinol 164:69–74. doi:10.1530/EJE-10-0875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thommesen L, Stunes AK, Monjo M et al (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99:824–834. doi:10.1002/jcb.20915

    Article  CAS  PubMed  Google Scholar 

  45. Patsch JM, Xiaojuan L, Baum T et al (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728. doi:10.1002/jbmr.1950

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu EW, Thomas BJ, Brown JK et al (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27:119–124. doi:10.1002/jbmr.506

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Madhuri Poduri, MS (Department of Internal Medicine, UTSW) for her expert help in protocol implementation, patient care, and data collection. The authors would also like to express their gratitude to all the study volunteers and UTSW Hospital Staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Maalouf.

Ethics declarations

Funding sources

This work was supported by the National Institutes of Health grants: RR024476 and RR024982.

Conflicts of interest

Ildiko Lingvay received consultant/research grants from Novo Nordisk; consultant from AstraZeneca, Lilly, and Sanofi; and research grant from GI Dynamics and Pfizer/Merck and publication support from AstraZeneca, Boehringer Ingelheim, Novo Nordisk, and Sanofi. The remaining authors have nothing to disclose.

Ethical approval

All procedures performed in the present study involving human participants were approved by the University of Texas at Southwestern Medical Center at Dallas (TX) Institutional Review Board and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants in the study.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pop, L.M., Lingvay, I., Yuan, Q. et al. Impact of pioglitazone on bone mineral density and bone marrow fat content. Osteoporos Int 28, 3261–3269 (2017). https://doi.org/10.1007/s00198-017-4164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4164-3

Keywords

Navigation