Skip to main content
Log in

Vertical and horizontal spheroidal boundary-value problems

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Vertical and horizontal spheroidal boundary-value problems (BVPs), i.e., determination of the external gravitational potential from the components of the gravitational gradient on the spheroid, are discussed in this article. The gravitational gradient is decomposed into the series of the vertical and horizontal vector spheroidal harmonics, before being orthogonalized in a weighted sense by two different approaches. The vertical and horizontal spheroidal BVPs are then formulated and solved in the spectral and spatial domains. Both orthogonalization methods provide the same analytical solutions for the vertical spheroidal BVP, and give distinct, but equivalent, analytical solutions for the horizontal spheroidal BVP. A closed-loop simulation is performed to test the correctness of the analytical solutions, and we investigate analytical properties of the sub-integral kernels. The systematic treatment of the spheroidal BVPs and the resulting mathematical equations extend the theoretical apparatus of geodesy and of the potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ardalan AA (1999) High resolution regional geoid computation in the World Geodetic Datum 2000 based upon collocation of linearized observational functionals of the type GPS, gravity potential and gravity intensity. PhD Thesis, Department of Geodesy and Geoinformatics, Stuttgart University, Stuttgart, Germany, 239 pp

  • Ardalan AA, Safari A (2005) Global height datum unification: a new approach in gravity potential space. J Geod 79:512–523

    Article  Google Scholar 

  • Ardestani VE, Martinec Z (2001) Ellipsoidal Stokes boundary-value problem with ellipsoidal corrections in the boundary condition. Stud Geophys Geod 45:109–126

    Article  Google Scholar 

  • Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2008) Geoid and high resolution sea surface topography modelling in the mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geod 83:751–772

    Article  Google Scholar 

  • Bjerhammar A (1962) On an explicit solution of the gravimetric boundary value problem for an ellipsoidal surface of reference. Final technical report, Geodetic Division, The Royal Institute of Technology, Stockholm, Sweden, 100 pp

  • Bölling C, Grafarend EW (2005) Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J Geod 79:300–330

    Article  Google Scholar 

  • Claessens SJ (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD Dissertation, Curtin University of Technology, Perth, Australia, 220 pp

  • Claessens SJ, Featherstone WE (2008) The Meissl scheme for the geodetic ellipsoid. J Geod 82:513–522

    Article  Google Scholar 

  • Eshagh M (2011) The effect of spatial truncation error on the integral inversion of satellite gravity gradiometry data. Adv Space Res 45:1238–1247

    Article  Google Scholar 

  • Fei Z (2000) Refinements of geodetic boundary value problem solutions. PhD Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada, 198 pp

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. In: Taft EJ, Nashed Z (eds) Pure and Applied Mathematics, A Series of Monographs and Textbooks. CRC Press, Taylor & Francis Group, Boca Raton, 452 pp

  • Freeden W, Gervens T, Schreiner M (1994) Tensor spherical harmonics and tensor spherical splines. Manuscr Geod 19:70–100

    Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup. In: Hutter K (ed) Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin, 602 pp

  • Fukushima T (2012a) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating points numbers. J Geod 86:271–285

    Article  Google Scholar 

  • Fukushima T (2012b) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers: II first-, second-, and third-order derivatives. J Geod 86:1019–1028

    Article  Google Scholar 

  • Fukushima T (2013) Recursive computation of oblate spheroidal harmonics of the second kind and their first-, second-, and third-order derivatives. J Geod 87:303–309

    Article  Google Scholar 

  • Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi F, Ulerich R (2013) GNU Scientific Library. Reference Manual, Edition 1.16, for GSL Version 1.13, 17 July 2013, 514 pp

  • Garabedian P (1953) Orthogonal harmonic polynomials. Pac J Math 3:585–603

    Article  Google Scholar 

  • Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem—vertical deflections and geoid undulations—the completed Meissl diagram. J Geod 75:363–390

    Article  Google Scholar 

  • Grafarend EW (2011) Space gradiometry: tensor-valued ellipsoidal harmonics, the datum problem and application of the Lusternik–Schnirelmann category to construct a minimum atlas. Int J Geomath 1:145–166

    Article  Google Scholar 

  • Grafarend EW (2015) The reference figure of the rotating earth in geometry and gravity space and an attempt to generalize the celebrated Runge–Walsh approximation theorem for irregular surfaces. Int J Geomath 6:101–140

    Article  Google Scholar 

  • Grafarend EW, Finn G, Ardalan AA (2006) Ellipsoidal vertical deflections and ellipsoidal gravity disturbance: case studies. Stud Geophys Geod 50:1–57

    Article  Google Scholar 

  • Grafarend EW, Heck B, Knickmeyer EH (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Géod 59:11–32

    Article  Google Scholar 

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integral on the sphere using 1D-FFT and a comparison with existing methods for Stokes integral. Manuscr Geod 18:227–241

    Google Scholar 

  • Heck B, Seitz K (2003) Solution of the linearized geodetic boundary value problem for an ellipsoid boundary to order \(e^3\). J Geod 77:182–192

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Co., San Francisco, p 364

    Google Scholar 

  • Hobson EW (1965) The theory of spherical and ellipsoidal harmonics. Chelsea Publishing Company, New York, p 500

    Google Scholar 

  • Holmes S, Featherstone W (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geod 76:279–299

    Article  Google Scholar 

  • Holota P (1983a) Mixed boundary value problems in physical geodesy. In: Holota  P (ed) Proceedings of the international symposium: figure of the earth, the moon and other planets, September 20–25, 1982, Prague, Czech Republic, Monograph Series of the Research Institute of Geodesy, Topography and Cartography, Prague, Czech Republic, pp 253–285

  • Holota P (1983b) The altimetry-gravimetry boundary value problem I: linearization, Friedrichs’ inequality. Boll Geod Sci Affini 1:13–32

    Google Scholar 

  • Holota P (1983c) The altimetry-gravimetry boundary value problem II: weak solution, V-ellipticity. Boll Geod Sci Affini 1:69–84

    Google Scholar 

  • Holota P, Nesvadba O (2014) Reproducing kernel and Neumann’s function for the exterior of an oblate ellipsoid of revolution: application in gravity field studies. Stud Geophys Geod 58:505–535

    Article  Google Scholar 

  • Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical evaluation of Stokes’s integral. Stud Geophys Geod 44:374–380

    Article  Google Scholar 

  • Jekeli C (1988) The exact transformation between ellipsoidal and spherical expansions. Manuscr Geod 13:106–113

    Google Scholar 

  • Jiang T, Wang YM (2016) On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation. J Geod 90:1405–1418

    Article  Google Scholar 

  • Jinghai Y, Xiaoping W (1997) The solution of mixed boundary value problems with the reference ellipsoid as boundary. J Geod 71:454–460

    Article  Google Scholar 

  • Kern M, Schwarz P, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod 77:217–225

    Article  Google Scholar 

  • Koch KR (1969) Solution of the geodetic boundary value problem for a reference ellipsoid. J Geophys Res 74:3796–3803

    Article  Google Scholar 

  • Lowes FJ, Winch DE (2012) Orthogonality of harmonic potentials and fields in spheroidal and ellipsoidal coordinates: application to geomagnetism and geodesy. Geophys J Int 191:491–507

    Article  Google Scholar 

  • Martensen E (1968) Potentialtheorie. Teubner-Verlag, Stuttgart, Germany

    Google Scholar 

  • Martinec Z (1997) Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Stud Geophys Geod 41:103–129

    Article  Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49

    Article  Google Scholar 

  • Martinec Z, Grafarend EW (1997) Construction of Green’s function to the Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of revolution. J Geod 71:562–570

    Article  Google Scholar 

  • Mather RS (1973) A solution of the geodetic boundary value problem to order \(e^3\). Report No. X-592-73-11, Goddard Space Flight Center, Greenbelt, Maryland, USA, 136 pp

  • Mayrhofer R, Pail R (2012) Future satellite gravity field missions: feasibility study of post-Newtonian method. In: Kenyon S, Pacino M, Marti U (eds) Geodesy for Planet Earth, IAG Symposium, vol 136. Springer, Berlin, pp 231–238

    Chapter  Google Scholar 

  • Mazurova EM, Yurkina MI (2011) Use of Green’s function for determining the disturbing potential of an ellipsoidal Earth. Stud Geophys Geod 55:455–464

    Article  Google Scholar 

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Report No. 151, Department of Geodetic Science, The Ohio State University, Columbus, USA, 86 pp

  • Molodenskii MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. The Israel Program for Scientific Translations, Department of Commerce, Washington, DC, USA, 248 pp

  • Moritz H (1989) Advanced physical geodesy, 2nd edn. Herbert Wichmann Verlag, Karlsruhe, p 500

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Article  Google Scholar 

  • Najafi-Alamdary M, Ardalan AA, Emadi S-R (2012) Ellipsoidal Neumann geodetic boundary-value problem based on surface gravity disturbances: case study of Iran. Stud Geophys Geod 56:153–170

    Article  Google Scholar 

  • Nesvadba O, Holota P (2016) An ellipsoidal analogue to Hotine’s kernel: accuracy and applicability. In: Jin S, Barzaghi R (eds) IGFS 2014, IAG Symposia, vol 144. Springer International Publishing, Cham, pp 93–100

  • Novák P (2003) Geoid determination using one-step integration. J Geod 77:193–206

    Article  Google Scholar 

  • Novák P, Šprlák M, Tenzer R, Pitoňák M (2017) Integral formulas for transformation of potential field parameters in geosciences. Earth Sci Rev 164:208–231

    Article  Google Scholar 

  • Novák P, Vaníček P, Véronneau M, Holmes S, Featherstone WE (2001) On the accuracy of modified Stokes’s integration in high-frequency gravimetric geoid determination. J Geod 74:644–654

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res (Solid Earth) 117:B04406

    Article  Google Scholar 

  • Petrovskaya MS, Vershkov AN (2008) Development of the second-order derivatives of the Earth’s potential in the local north-oriented reference frame in orthogonal series of modified spherical harmonics. J Geod 82:929–944

    Article  Google Scholar 

  • Plag H-P, Altamimi Z, Bettadpur S, Beutler G, Beyerle G, Cazenave A, Crossley D, Donnellan A, Forsberg R, Gross R, Hinderer J, Komjathy A, Ma C, Mannucci AJ, Noll C, Nothnagel A, Pavlis EC, Pearlman M, Poli P, Schreiber U, Senior K, Woodworth PL, Zerbini S, Zuffada C (2009) The goals, achievements, and tools of modern geodesy. In: Plag H-P, Pearlman M (eds) Global Geodetic Observing System, Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer, Berlin, pp 15–88

    Google Scholar 

  • Rexer M, Hirt C, Claessens S, Tenzer R (2016) Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surv Geophys 37:1035–1074

    Article  Google Scholar 

  • Ritter S (1998) The nullfield method for the ellipsoidal Stokes problem. J Geod 72:101–106

    Article  Google Scholar 

  • Safari A, Ardalan AA, Grafarend EW (2005) A new ellipsoidal gravimetric, satellite altimetry and astronomic boundary value problem, a case study: the geoid of Iran. J Geodyn 39:545–568

    Article  Google Scholar 

  • Sansò F (1995) The long road from the measurements to boundary value problems of physical geodesy. Manuscr Geod 20:326–344

    Google Scholar 

  • Sjöberg LE (2003) Ellipsoidal corrections to order \(e^2\) of geopotential coefficients and Stokes’ formula. J Geod 77:139–147

    Article  Google Scholar 

  • Sjöberg LE, Eshagh M (2012) A theory on geoid modeling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth gravitational model. Acta Geod Geophys 47:13–28

    Article  Google Scholar 

  • Šprlák M, Novák P (2016) Spherical gravitational curvature boundary-value problem. J Geod 90:727–739

    Article  Google Scholar 

  • Thong NC (1993) Untersuchung zur Lösungen der fixen gravimetrischen Randwertprobleme mittels sphäroidaler und Greenscher Funktione. Deutsche Geodätische Kommission, Reihe C, Nr. 399, München, Germany, 107 pp

  • Torge W, Müller J (2012) Geodesy, 4th edn. De Gruyter Inc., Berlin, p 433

    Book  Google Scholar 

  • van Gelderen M, Rummel R (2001) The solution of the general geodetic boundary value problem by least squares. J Geod 75:1–11

    Article  Google Scholar 

  • Vaníček P, Huang J, Novák P, Pagiatakis S, Véronneau M, Martinec Z, Featherstone WE (1999) Determination of the boundary values for the Stokes–Helmert problem. J Geod 73:180–192

    Article  Google Scholar 

  • Wenzel H-G (1998) Ultra-high degree geopotential models GPM98A, B, and C to degree 1800. In: Proceedings of the Joint Meeting of the International Gravity Commission and International Geoid Commission, 7–12 September 1998, Trieste, Italy

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geod 82:637–653

    Article  Google Scholar 

  • Witsch KJ (1985) On a free boundary value problem of physical geodesy, I (Uniqueness). Math Methods Appl Sci 7:269–289

    Article  Google Scholar 

  • Witsch KJ (1986) On a free boundary value problem of physical geodesy, II (Existence). Math Methods Appl Sci 8:1–22

    Article  Google Scholar 

  • Yu J-H (2004) Integral solution of the Dirichlet’s boundary value problem with the ellipsoid boundary under the accuracy of O(\(T^2\)). Chin J Geophys 47:86–93

    Article  Google Scholar 

  • Yu J, Cao H (1996) Elliptical harmonic series and the original Stokes’ problem with the boundary of the reference ellipsoid. J Geod 70:431–439

    Article  Google Scholar 

  • Yu J, Jekeli C, Zhu M (2003) Analytical solutions of the Dirichlet and Neumann boundary-value problems with an ellipsoidal boundary. J Geod 76:653–667

    Article  Google Scholar 

  • Zagrebin DV (1956) Die Theorie des regularisierten Geoids, vol 9. Veröffentlichung des Geodätischen Instituts Potsdam, Potsdam (German Translation of: Teoriia Reguliarizirovannogo Geoida. Trudy Instituta Teorecticheskol Astronomii 1: 87–222)

  • Zhu Z (1981) The Stokes problem for the ellipsoid using ellipsoidal kernels. Report No. 319, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA, 19 pp

Download references

Acknowledgements

Thoughtful and constructive comments of Dr. Peter Holota and the other two anonymous reviewers are gratefully acknowledged. Thanks are also extended to the editor-in-chief Prof. Jürgen Kusche and the responsible editor Prof. Wolfgang Keller for handling our manuscript. We also thank Dr. Lloyd Pilgrim for reading and correcting the revised version of the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Šprlák.

Equivalence of the analytical solutions for the horizontal spheroidal BVP

Equivalence of the analytical solutions for the horizontal spheroidal BVP

In this Appendix, we show that the two distinct analytical solutions of the horizontal spheroidal BVP, see Eqs. (43), (44), and (46), are mathematically equivalent. We restrict the proof only to the spectral domain. Implications and conclusions are identical also in the spatial domain.

The starting point of the proof is Eq. (44), which can be written as follows:

$$\begin{aligned} \bar{C}_{n,m}= & {} \frac{a_0}{4 \pi GM} \frac{1}{n(n + 1)} \int _{{\varOmega }'} \bigg [L(b_0,\beta ')\ V^{\beta }(b_0,{\varOmega }')\ \frac{\partial }{\partial \beta '}\ \bar{Y}_{n,m}({\varOmega }') \nonumber \\&\quad -\, \frac{a_0}{\cos \beta '}\ V^{\lambda }(b_0,{\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\bigg ]\ {\mathrm {d}}{\varOmega }' \nonumber \\&\quad +\, \frac{1}{4 \pi GM} \frac{\varepsilon ^2}{n(n + 1)} \int _{{\varOmega }'} \cos \beta '\ V^{\lambda }(b_0,{\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\ {\mathrm {d}}{\varOmega }' \nonumber \\&\quad +\, \frac{a_0}{4 \pi GM} \frac{\varepsilon ^2 m^2}{n(n + 1)\big [a_0^2\ n(n + 1) - \varepsilon ^2 m^2\big ]} \nonumber \\&\quad \times \int _{{\varOmega }'} \bigg [L(b_0,\beta ')\ V^{\beta }(b_0,{\varOmega }')\ \frac{\partial }{\partial \beta '}\ \bar{Y}_{n,m}({\varOmega }') \nonumber \\&\quad -\, \frac{L^2\left( b_0,\beta '\right) }{a_0 \cos \beta '}\ V^{\lambda }(b_0,{\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\bigg ]\ {\mathrm {d}}{\varOmega }'. \end{aligned}$$
(53)

The last equation was obtained with the help of the formula:

$$\begin{aligned} \frac{L^2\left( b_0,\beta '\right) }{a_0^2 \cos ^2 \beta '} = \frac{1}{\cos ^2 \beta '} - \frac{\varepsilon ^2}{a_0^2}\ , \end{aligned}$$
(54)

which can be deduced from Eq. (32) by considering \(u' = b_0\) and \(v(b_0) = a_0\). In addition, we exploited the partial fraction expansion of the term in front of the integral of Eq. (44), i.e.:

$$\begin{aligned}&\frac{a_0^2}{a_0^2\ n(n + 1) - \varepsilon ^2\ m^2} \nonumber \\&\quad = \frac{1}{n + 1} + \frac{\varepsilon ^2\ m^2}{n(n+1)\big [a_0^2\ n (n + 1) - \varepsilon ^2\ m^2\big ]}. \end{aligned}$$
(55)

The addition of the second integral with the third one in Eq. (53) reads:

$$\begin{aligned}&\frac{1}{4 \pi GM} \frac{\varepsilon ^2}{n(n + 1)} \int _{{\varOmega }'} \cos \beta ' \nonumber \\&\quad \times \bigg [- \frac{GM}{a_0} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \frac{1}{a_0 \cos \beta '}\ \bar{C}_{n',m'}\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n',m'}({\varOmega }') \bigg ] \nonumber \\&\quad \times \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\ {\mathrm {d}}{\varOmega }' \nonumber \\&\quad +\, \frac{a_0}{4 \pi GM} \frac{\varepsilon ^2 m^2}{n(n + 1)\big [a_0^2\ n(n + 1) - \varepsilon ^2 m^2\big ]} \int _{{\varOmega }'} \Bigg \{L(b_0,\beta ')\ \nonumber \\&\quad \times \bigg [\frac{GM}{a_0} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \frac{1}{L(b_0, \beta ')}\ \bar{C}_{n',m'}\ \frac{\partial }{\partial \beta '}\ \bar{Y}_{n',m'}({\varOmega }')\bigg ] \nonumber \\&\quad \times \frac{\partial }{\partial \beta '} \bar{Y}_{n,m}({\varOmega }') \nonumber \\&\quad -\, \frac{L^2(b_0,\beta ')}{a_0 \cos \beta '}\ \bigg [- \frac{GM}{a_0} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \frac{1}{a_0 \cos \beta '}\nonumber \\&\quad \times \bar{C}_{n',m'}\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n',m'}({\varOmega }') \bigg ] \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\Bigg \} {\mathrm {d}}{\varOmega }' \nonumber \\&\quad = - \frac{\varepsilon ^2}{a_0^2\ n(n + 1)} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \bar{C}_{n',m'}\ \frac{1}{4 \pi } \nonumber \\&\qquad \times \int _{{\varOmega }'} \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n',m'}({\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\ {\mathrm {d}}{\varOmega }' \nonumber \\&\qquad +\, \frac{\varepsilon ^2 m^2}{n(n + 1)\big [a_0^2\ n(n + 1) - \varepsilon ^2 m^2\big ]} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \bar{C}_{n',m'} \nonumber \\&\qquad \times \frac{1}{4 \pi } \int _{{\varOmega }'} \bigg [\frac{\partial }{\partial \beta '}\ \bar{Y}_{n',m'}({\varOmega }')\ \frac{\partial }{\partial \beta '}\ \bar{Y}_{n,m}({\varOmega }') \nonumber \\&\qquad +\, \frac{1}{\cos ^2 \beta '} \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n',m'}({\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\bigg ]\, {\mathrm {d}}{\varOmega }' \nonumber \\&\qquad -\, \frac{\varepsilon ^4 m^2}{a_0^2\ n(n + 1)\big [a_0^2\ n(n + 1) - \varepsilon ^2 m^2\big ]} \sum _{n'=0}^{\infty } \sum _{m'=-n'}^{+n'} \bar{C}_{n',m'} \nonumber \\&\qquad \times \frac{1}{4 \pi } \int _{{\varOmega }'} \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n',m'}({\varOmega }')\ \frac{\partial }{\partial \lambda '}\ \bar{Y}_{n,m}({\varOmega }')\ {\mathrm {d}}{\varOmega }' \nonumber \\&\quad = \bar{C}_{n,m} \Bigg \{\frac{\varepsilon ^2 m^2}{a_0^2\ n(n + 1) - \varepsilon ^2 m^2} - \frac{\varepsilon ^2 m^2\ }{a_0^2\ n(n + 1)} \nonumber \\&\qquad \times \,\bigg [1 + \frac{\varepsilon ^2 m^2}{a_0^2\ n(n + 1) - \varepsilon ^2 m^2} \bigg ] \Bigg \} \nonumber \\&\quad = - \bar{C}_{n,m} \Bigg \{\frac{\varepsilon ^2 m^2\ }{a_0^2\ n(n + 1)} \bigg [1 - \frac{a_0^2\ n(n + 1) - \varepsilon ^2 m^2}{a_0^2\ n(n + 1) - \varepsilon ^2 m^2} \bigg ] \Bigg \} \nonumber \\&\quad = 0. \end{aligned}$$
(56)

The left-hand side of Eq. (56) results from inserting Eqs. (18) and (19), i.e., the spheroidal harmonic expansions of the horizontal gravitational gradient components \(V^{\beta }\) and \(V^{\lambda }\), into Eq. (53). The interchange of the order of summation and integration (assuming the uniform convergence of the series expansion) and the application of Eq. (54) lead to the expression after the first equality. The expression after the second equality is obtained by making use of the orthogonality relationship of Eq. (25) and another one defined as:

$$\begin{aligned}&\frac{1}{4 \pi } \int _{{\varOmega }'} \frac{\partial }{\partial \lambda '} \bar{Y}_{n,m}({\varOmega }')\ \frac{\partial }{\partial \lambda '} \bar{Y}_{n',m'}({\varOmega }')\ {\mathrm {d}}{\varOmega }' \nonumber \\&\quad = m\ m'\ \delta _{n,n'}\ \delta _{m,m'}. \end{aligned}$$
(57)

Simple algebraic operations gave the last two equalities of Eq. (56).

Taking into account the result of Eq. (56), the only nonzero term of Eq. (53) is the first integral. This is identical with the spheroidal harmonic analysis by Eq. (43). Thus, we have proved that Eqs. (43) and (44) are mathematically equivalent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprlák, M., Tangdamrongsub, N. Vertical and horizontal spheroidal boundary-value problems. J Geod 92, 811–826 (2018). https://doi.org/10.1007/s00190-017-1096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1096-9

Keywords

Navigation