Skip to main content
Log in

Reproducing kernel and Neumann’s function for the exterior of an oblate ellipsoid of revolution: application in gravity field studies

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The purpose of this paper is to discuss the construction of the reproducing kernel of Hilbert’s space of functions that are harmonic in the exterior of an oblate ellipsoid of revolution. The motivation comes from the weak solution concept applied to Neumann’s problem for Laplace’s partial differential equation in gravity field studies. The use of the reproducing kernel enables the construction of a function basis that is suitable for the approximation representation of the solution and offers a straightforward way leading to entries in Galerkin’s matrix of the respective linear system for unknown scalar coefficients. The serious problem, however, is the summation of the series that represents the kernel. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no straightforward analogue to the addition theorem known for the spherical situation. This makes the computation of the kernel and the set of the entries in Galerkin’s matrix rather demanding, even by means of high performance computer facilities. Therefore, the reproducing kernel and its series representation are analyzed. The apparatus of hypergeometric functions and series is used. The kernel is split into parts. Some of the resulting series may be summed relatively easily, except for some technical tricks. For the remaining series, however, the summation needs more complex tools. In particular, the summation was converted to elliptic integrals. This approach leads to an effective numerical treatment of the kernel. The results are presented. Finally, the relation of the reproducing kernel to Green’s function of the second kind (Neumann’s function) is discussed with a special view to physical geodesy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bateman H. and Erdélyi A., 1953. Higher Transcendental Functions. Volume 1. McGraw-Hill Book Company, Inc., New York-Toronto-London.

  • Bers L., John F. and Schechter M., 1964. Partial Differential Equations. Interscience Publishers, New York — London — Sydney.

    Google Scholar 

  • Brovar V.V., Kopeikina Z.S. and Pavlova M.V., 2001. Solution of the Dirichlet and Stokes exterior boundary problems for the Earth’s ellipsoid. J. Geodesy, 74, 767–772.

    Article  Google Scholar 

  • Carlson B.C., 1979. Computing elliptic integrals by duplication. Numerische Mathematik, 33, 1–16.

    Article  Google Scholar 

  • Čuřík F., 1944. Matematika. Technický prvodce, XLIX, No. 196. Česká matice technická, Prague, Czech Republic (in Czech).

  • Fei Z.L. and Sideris M.G., 2000. A new method for computing the ellipsoidal correction for Stokes’s formula. J. Geodesy, 74, 223–231.

    Article  Google Scholar 

  • Fei Z.L. and Sideris M.G., 2001. Corrections to “A new method for computing the ellipsoidal correction for Stokes’s formula”. J. Geodesy, 74, 671.

    Article  Google Scholar 

  • Grafarend E.W., Ardalan A. and Sideris M.G., 1999. The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Brun’s transform). J. Geodesy, 73, 513–533.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2003. Solution of the linearized geodetic boundary value problem for an ellipsoidal boundary to order e 3. J. Geodesy, 77, 182–192.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Company, San Francisco, CA.

    Google Scholar 

  • Hobson E.W., 1931. The Theory of Spherical and Ellipsoidal Harmonics. University Press, Cambridge, U.K.

    Google Scholar 

  • Hofmann-Wellenhof B. and Moritz H., 2005. Physical Geodesy. Springer, Wien — New York.

    Google Scholar 

  • Holota P. 1992a. On the iteration solution of the geodetic boundary-value problem and some model refinements. Travaux de l’Association Internationale de Geodesie, 29, 260–289.

    Google Scholar 

  • Holota P. 1992b. Integral representation of the disturbing potential: Effects involved, iteration technique and its convergence. In: Holota P. and Vermeer M. (Eds), First Continental Workshop on the Geoid in Europe: Towards a Precise Pan-european Reference Geoid for the Nineties, Prague, May 11–14, 1992. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 402–419, ISBN: 8090131921, 9788090131927.

    Google Scholar 

  • Holota P., 1997. Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. J. Geodesy, 71, 640–651.

    Article  Google Scholar 

  • Holota P., 2003a. Variational methods in the representation of the gravitational potential. In: Schäfer U. (Ed.), Proceedings of the Workshop: Analytical Representation of Potential Field Anomalies for Europe (AROPA): October 23th to 27th, 2001, Münsbach-Castle, Münsbach, Grand-Duchy of Luxembourg. Centre européen de géodynamique et de séismologie, Luxembourg, Cahiers du Centre Européen de Géodynamique et de Séismologie, 20, 3–11.

    Google Scholar 

  • Holota P., 2003b. Gronwall’s inequality in an approximate computation of ellipsoidal harmonics. In: Em. Univ.-Prof. Dipl.-Ing. Dr.h.c.mult. Dr.techn. Helmut Moritz Festschrift zum 70. Geburtstag Institut für Geodäsie, Technische Universität Graz, Graz, Austria, 111–122.

    Google Scholar 

  • Holota P., 2004. Some topics related to the solution of boundary-value problems in geodesy. In: Sansò F. (Ed.), V Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 127, Springer-Verlag, Berlin, Germany, 189–200.

    Article  Google Scholar 

  • Holota P., 2011. Reproducing kernel and Galerkin’s matrix for the exterior of an ellipsoid: Application in gravity field studies. Stud. Geophys. Geod., 55, 397–413.

    Article  Google Scholar 

  • Holota P. and Nesvadba O., 2007. Model refinements and numerical solutions of weakly formulated boundary-value problems in physical geodesy. In: Xu P., Liu J. and Dermanis A. (Eds), VI Hotine-Marussi Symposium of Theoretical and Computational Geodesy. International Association of Geodesy Symposia, 132, Springer-Verlag, Berlin, Germany, 314–320.

    Google Scholar 

  • Holota P. and Nesvadba O., 2012. Method of successive approximations in solving geodetic boundary value problems — Analysis and numerical experiments. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VII Hotine-Marussi Symposium. International Association of Geodesy Symposia, 137, Springer-Verlag, Berlin, Germany, 189–198.

    Article  Google Scholar 

  • Holota P. and Nesvadba O., 2014. Analytical continuation in physical geodesy constructed by means of tools and formulas related to an ellipsoid of revolution. Geophys. Res. Abs., 16, EGU2014–16953 (http://meetingorganizer.copernicus.org/EGU2014/EGU2014-16953.pdf).

    Google Scholar 

  • Hotine M., 1969. Mathematical Geodesy. ESSA Monographs. U.S. Environmental Science Services Administration, Washington, D.C.

    Google Scholar 

  • Huang J., Véronneau M. and Pagiatakis S.D. 2003. On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid. J. Geodesy, 77, 171–181.

    Article  Google Scholar 

  • Jahnke E. and Emde F., 1945. Tables of Functions with Formulae and Curves. Dover Publications, New York.

    Google Scholar 

  • Koch K.-R. 1968. Solution of the Geodetic Boundary Value Problem in Case of Reference Ellipsoid. Report 104, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Koch K.-R. 1969. Solution of the geodetic boundary value problem for a reference ellipsoid. J. Geophys. Res., 74, 3796–3803.

    Article  Google Scholar 

  • Kratzer A. and Franz W., 1960. Transzendente Funktionen. Akademische Verlagsgesellschaft, Leipzig, Germany (in German).

    Google Scholar 

  • Martinec Z. 1998. Contribution of Green’s function for the Stokes boundary-value problem with ellipsoidal corrections in the boundary condition. J. Geodesy, 72, 460–471.

    Article  Google Scholar 

  • Martinec Z. and Grafarend E.W. 1997a. Solution of the Stokes boundary-vaue problem on an ellipsoid of revolution. Stud. Geophys. Geod., 41, 103–129.

    Article  Google Scholar 

  • Martinec Z. and Grafarend E.W. 1997b. Construction of Green’s function to the external Dirichlet boundary-vaue problem for the Laplace equation on an ellipsoid of revolution. J. Geodesy, 71, 562–570.

    Article  Google Scholar 

  • Mazurova E.M. and Yurkina M.I. 2011. Use of Green’s function for determining the disturbing potential of an ellipsoidal Earth. Stud. Geophys. Geod., 55, 455–464.

    Article  Google Scholar 

  • Meschkowski H., 1962. Hilbertsche Räume mit Kernfunktion. Springer-Verlag, Berlin, Germany (in German).

    Book  Google Scholar 

  • Michlin S.G., 1964. Variational Methods in Mathematical Physics. Pergamon Press, New York.

    Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, Germany.

    Google Scholar 

  • Moritz H., 1992. Geodetic Reference System 1980. In: Tscherning C.C. (Ed.) The Geodesist’s Handbook 1992. Bulletin Géodésique, 66, 187–192.

    Google Scholar 

  • Nečas J., 1967. Les méthodes directes en théorie des équations elliptiques. Academia, Prague, Czech Republic (in French).

    Google Scholar 

  • Nesvadba O., 2009. Numerical problems in evaluating high degree and order associated Legendre functions. 3, 11, EGU2009–1225 (http://meetingorganizer.copernicus.org/EGU2009/EGU2009-1225.pdf).

    Google Scholar 

  • Nesvadba O., 2010. Reproducing kernels in harmonic spaces and their numerical implementation. Geophys. Res. Abs., 12, EGU2010–14298 (http://meetingorganizer.copernicus.org/EGU2010/EGU2010-14298.pdf).

    Google Scholar 

  • Nesvadba O., Holota P. and Klees R., 2007. A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P. and Rizos C. (Eds.), Dynamic Planet — Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. International Association of Geodesy Symposia, 130, Springer-Verlag, Berlin, Germany, 370–376.

    Google Scholar 

  • Nesvadba O., Holota P. and Lederer M., 2013. Quasigeoid and the relation of ETRS to the Bpv system in the Czech Republic. International Association of Geodesy Scientific Assembly, http://www.iag2013.org/IAG_2013/Program_files/abstracts_iag_2013_2808.pdf.

    Google Scholar 

  • Neyman Yu.M., 1979. A Variational Method of Physical Geodesy. Nedra Publishers, Moscow, Russia (in Russian).

    Google Scholar 

  • Pellinen L.P. 1982. Effects of Earth’s ellipticity on solving geodetic boundary value problem. Bollettino di Geodesia e Scienze Affini, 41, 89–103.

    Google Scholar 

  • Pick M., Pícha J. and Vyskoil V., 1973. Theory of the Earth’s Gravity Field. Academia, Prague, Czech Republic.

    Google Scholar 

  • Prudnikov A.P., Brychkov Yu.A. and Marichev O.I., 1981. Integrals and Series, Elementary Functions. Nauka Publishers, Moscow, Russia (in Russian).

    Google Scholar 

  • Rektorys K., 1977. Variational Methods. Reidel Co., Dordrecht, The Netherlands.

    Google Scholar 

  • Sansò F., 1986. Statistical methods in physical geodesy. In: Sünkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, 7. Springer-Verlag, Berlin, Germanz, 49–155.

    Article  Google Scholar 

  • Sansò F. and Sona G., 2001. ELGRAM: an ellipsoidal gravity model manipulator. Bollettino di Geodesia e Scienze Affini, 60, 215–226.

    Google Scholar 

  • Sjöberg L.E. 2004. The ellipsoidal corrections to the topographic geoid effects. J. Geodesy, 77, 804–808.

    Article  Google Scholar 

  • Smirnov V.I., 1965. Lectures in Higher Mathematics. Vol. I. Nauka Publishers, Moscow, Russia (in Russian).

  • Smirnov V.I., 1958. Lectures in Higher Mathematics. Vol. III, Part 2. Nauka Publishers, Moscow, Russia (in Russian).

  • Sona G., 1995. Numerical problems in the computation of ellipsoidal harmonics. J. Geodesy, 70, 117–126.

    Article  Google Scholar 

  • Thong N.C., 1992. Spheroidal harmonic analysis and integral formula of the Earth’s gravitational field based on gravimetric data. In: Holota P. and Vermeer M. (Eds), First Continental Workshop on the Geoid in Europe: Towards a Precise Pan-european Reference Geoid for the Nineties, Prague, May 11-14, 1992. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 393–401, ISBN: 8090131921, 9788090131927.

    Google Scholar 

  • Thong N.C. and Grafarend E.W., 1989. A spherical harmonic model of the terrestrial gravitational field. Manuscripta Geodaetica, 14, 285–304.

    Google Scholar 

  • Tscherning C.C., 1975. Application of collocation. Determination of a local approximation to the anomalous potential of the Earth using “exact” astro-gravimetric collocation. In: Brosowski B. and Martensen E. (Eds), Methoden und Verfahren der Mathematischen Physik, 14, 83–110.

    Google Scholar 

  • Tscherning C.C., 2004. A discussion on the use of spherical approximation or no approximation in gravity field modelling with emphasis on unsolved problems in least-squares collocation. In: Sansò F. (Ed.), V Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 127. Springer-Verlag, Berlin, Germanz, 184–188.

    Article  Google Scholar 

  • Yu J., Jekeli C. and Zhu M. 2003. Analytical solution of the Dirichlet and Neumann boundary-value problems with an Ellipsoidal Boundary. J. Geodesy, 76, 653–667.

    Article  Google Scholar 

  • Yurkina M.I., 1996. Use of Green’s function for determining the disturbing potential of an ellipsoidal earth. Fizicheskaya Geodeziya, 2, TsNIIGAiK, 165–178 (in Russian).

    Google Scholar 

  • Zagrebin D.V., 1956. Die Theorie des regularisierten Geoids. Veröffentlichungen des Geodätischen Instituts in Potsdam, No. 9, Akademie-Verlag, Berlin, Germany (in German).

  • Zhidkov N.P., 1977. Linear Approximations of Functionals. Moscow University Publishers, Moscow, Russia (in Russian).

    Google Scholar 

  • Zhu Z.W. 1981. The Stokes Problem for the Ellipsoid Using Ellipsoidal Kernels. Report 319. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Holota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holota, P., Nesvadba, O. Reproducing kernel and Neumann’s function for the exterior of an oblate ellipsoid of revolution: application in gravity field studies. Stud Geophys Geod 58, 505–535 (2014). https://doi.org/10.1007/s11200-013-0861-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0861-3

Keywords

Navigation