Skip to main content
Log in

A classification approach to efficient global optimization in presence of non-computable domains

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Gaussian-Process based optimization methods have become very popular in recent years for the global optimization of complex systems with high computational costs. These methods rely on the sequential construction of a statistical surrogate model, using a training set of computed objective function values, which is refined according to a prescribed infilling strategy. However, this sequential optimization procedure can stop prematurely if the objective function cannot be computed at a proposed point. Such a situation can occur when the search space encompasses design points corresponding to an unphysical configuration, an ill-posed problem, or a non-computable problem due to the limitation of numerical solvers. To avoid such a premature stop in the optimization procedure, we propose to use a classification model to learn non-computable areas and to adapt the infilling strategy accordingly. Specifically, the proposed method splits the training set into two subsets composed of computable and non-computable points. A surrogate model for the objective function is built using the training set of computable points, only, whereas a probabilistic classification model is built using the union of the computable and non-computable training sets. The classifier is then incorporated in the surrogate-based optimization procedure to avoid proposing new points in the non-computable domain while improving the classification uncertainty if needed. The method has the advantage to automatically adapt both the surrogate of the objective function and the classifier during the iterative optimization process. Therefore, non-computable areas do not need to be a priori known. The proposed method is applied to several analytical problems presenting different types of difficulty, and to the optimization of a fully nonlinear fluid-structure interaction system. The latter problem concerns the drag minimization of a flexible hydrofoil with cavitation constraints. The efficiency of the proposed method compared favorably to a reference evolutionary algorithm, except for situations where the feasible domain is a small portion of the design space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Simpson T, Poplinski J, Koch NP, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150

    Article  MATH  Google Scholar 

  • Kleijnen JP (2009) Kriging metamodeling in simulation: a review. Eur J Oper Res 192(3):707–716

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  • Marrel A, Iooss B, Laurent B, Roustant O (2009) Calculations of sobol indices for the gaussian process metamodel. Reliab Eng Syst Saf 94(3):742–751

    Article  Google Scholar 

  • Wang P, Lu Z, Tang Z (2013) An application of the kriging method in global sensitivity analysis with parameter uncertainty. Appl Math Model 37(9):6543–6555

    Article  MathSciNet  Google Scholar 

  • Nickisch H, Rasmussen CE (2008) Approximations for binary gaussian process classification. J Mach Learn Res 9:2035–2078

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Shi Y, Zhou Q, Xiu R (2016) A sequential sampling strategy to improve the global fidelity of metamodels in multi-level system design. Struct Multidiscip Optim 53(6):1295–1313

    Article  MathSciNet  Google Scholar 

  • Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55 (3):1029–1050

    Article  MathSciNet  Google Scholar 

  • Dong H, Song B, Wang P, Dong Z (2017) Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems. Struct Multidisc Optim 57(4):1553– 1577

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive Black-Box functions. J Glob Optim 13(4):455– 492

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Song WP, Han ZH, Zhang Y (2017) Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Struct Multidiscip Optim 55(3):925–943

    Article  Google Scholar 

  • Glaz B, Friedmann PP, Liu L (2008) Surrogate based optimization of helicopter rotor blades for vibration reduction in forward flight. Struct Multidiscip Optim 35(4):341–363

    Article  Google Scholar 

  • Glaz B, Friedmann PP, Liu L (2009) Helicopter vibration reduction throughout the entire flight envelope using surrogate-based optimization. J Amer Helicopter Soc 54(1):12007

    Article  Google Scholar 

  • Aghajari N, Schäfer M (2015) Efficient shape optimization for fluid–structure interaction problems. J Fluids Struct 57:298–313

    Article  Google Scholar 

  • Sacher M, Hauville F, Duvigneau R, Maître OL, Aubin N, Durand M (2017) Efficient optimization procedure in non-linear fluid-structure interaction problem: application to mainsail trimming in upwind conditions. J Fluids Struct 69:209–231

    Article  Google Scholar 

  • Picheny V, Wagner T, Ginsbourger D (2013) A benchmark of kriging-based infill criteria for noisy optimization. Struct Multidiscip Optim 48(3):607–626

    Article  Google Scholar 

  • Li Z, Ruan S, Gu J, Wang X, Shen C (2016) Investigation on parallel algorithms in efficient global optimization based on multiple points infill criterion and domain decomposition. Struct Multidiscip Optim 54 (4):747–773

    Article  MathSciNet  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM computing surveys (CSUR) 31 (3):264–323

    Article  Google Scholar 

  • Zhang Y, Park C, Kim NH, Haftka RT (2017) Function prediction at one inaccessible point using converging lines. J Mech Des 139(5):051402

    Article  Google Scholar 

  • Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9 (3):293–300

    Article  Google Scholar 

  • Basudhar A, Dribusch C, Lacaze S, Missoum S (2012) Constrained efficient global optimization with support vector machines. Struct Multidiscip Optim 46(2):201–221

    Article  MATH  Google Scholar 

  • van Gestel T, Suykens JA, Baesens B, Viaene S, Vanthienen J, Dedene G, de Moor B, Vandewalle J (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54(1):5–32

    Article  MATH  Google Scholar 

  • Hansen N (2006) The CMA Evolution Strategy: a comparing review. In: Towards a new evolutionary computation. Springer, pp 75–102

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Hansen N, Arnold DV, Auger A (2015) Evolution strategies. In: Springer handbook of computational intelligence. Springer, pp 871–898

  • Hansen N (2016) The cma evolution strategy: a tutorial. arXiv:1604.00772

  • Huang D, Allen TT, Notz WI, Zheng N (2006) Global optimization of stochastic Black-Box systems via sequential kriging meta-models. J Global Optim 34(3):441–466

    Article  MathSciNet  MATH  Google Scholar 

  • Schonlau M (1997) Computer Experiments and Global Optimization. PhD thesis, University of Waterloo, Waterloo, Ont., Canada, Canada. AAINQ22234

  • Cawley GC (2006) Leave-one-out cross-validation based model selection criteria for weighted ls-svms. In: 2006 IEEE international joint conference on neural network proceedings. IEEE, pp 1661–1668

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B Methodol 36(2):111–147

    MathSciNet  MATH  Google Scholar 

  • Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Cawley GC, Talbot NL (2003) Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recogn 36(11):2585–2592

    Article  MATH  Google Scholar 

  • Cawley GC, Talbot NL (2004) Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw 17(10):1467–1475

    Article  MATH  Google Scholar 

  • Cawley GC, Talbot NL (2007) Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters. J Mach Learn Res 8:841–861

    MATH  Google Scholar 

  • Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16(1):125–127

    Article  MathSciNet  MATH  Google Scholar 

  • Van Calster B, Luts J, Suykens JAK, Condous G, Bourne T, Timmerman D, Van Huffel S (2007) Comparing methods for multi-class probabilities in medical decision making using LS-SVMs and kernel logistic regression. In: Artificial neural networks – ICANN 2007: 17th international conference, Porto, Portugal, September 9-13, 2007, Proceedings, part II. Springer, Berlin, pp 139–148

  • Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advan Large Margin Classifiers 10(3):61–74

    Google Scholar 

  • Lin HT, Lin CJ, Weng RC (2007) A note on platt’s probabilistic outputs for support vector machines. Mach Learn 68(3):267– 276

    Article  Google Scholar 

  • Arnold DV, Hansen N (2012) A (1 + 1)-CMA-ES for constrained optimisation. In: Soule T, Moore JH (eds) GECCO, Philadelphia, United States, ACM. ACM Press, pp 297–304

  • Tenne Y, Goh C (2010) Computational intelligence in expensive optimization problems. Adaptation, learning, and optimization. Springer, Berlin

    MATH  Google Scholar 

  • Platt JC Schölkopf B, Burges CJC, Smola AJ (eds) (1999) Fast training of support vector machines using sequential minimal optimization. MIT Press, Cambridge

  • Sacher M, Durand M, Berrini E, Hauville F, Duvigneau R, Le Maître O, Astolfi JA (2017) Flexible hydrofoil optimization for the 35th america’s cup with constrained ego method. In: International Conference on Innovation in High Performance Sailing Yachts, Innov’Sail, pp 193–205

  • Drela M (1989) XFOIL: an analysis and design system for low Reynolds number airfoils. Springer, Berlin, pp 1–12

    Google Scholar 

  • Morgado J, Vizinho R, Silvestre M, Ps̈coa J (2016) {XFOIL} vs {CFD} performance predictions for high lift low reynolds number airfoils. Aerosp Sci Technol 52:207–214

    Article  Google Scholar 

  • Durand M, Leroyer A, Lothodé C, Hauville F, Visonneau M, Floch R, Guillaume L (2014) FSI Investigation on stability of downwind sails with an automatic dynamic trimming. Ocean Eng 90:129–139

    Article  Google Scholar 

  • Pedersen P (1973) Some properties of linear strain triangles and optimal finite element models. Int J Numer Methods Eng 7(4):415–429

    Article  MATH  Google Scholar 

  • Yang X, Song Q, Cao A (2005) Weighted support vector machine for data classification. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, vol 2, pp 859–864

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Sacher.

Additional information

Responsible Editor: Raphael Haftka

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacher, M., Duvigneau, R., Le Maître, O. et al. A classification approach to efficient global optimization in presence of non-computable domains. Struct Multidisc Optim 58, 1537–1557 (2018). https://doi.org/10.1007/s00158-018-1981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1981-8

Keywords

Navigation