Skip to main content

Advertisement

Log in

Composite stacking sequence optimization for aeroelastically tailored forward-swept wings

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A method for stacking sequence optimization and aeroelastic tailoring of forward-swept composite wings is presented. It exploits bend-twist coupling to mitigate aeroelastic divergence. The method proposed here is intended for estimating potential weight savings during the preliminary aircraft design stages. A structural beam model of the composite wingbox is derived from anisotropic shell theory and the governing aeroelastic equations are presented for a spanwise discretized forward swept wing. Optimization of the system to reduce wing mass is undertaken for sweep angles of −35° to 0° and Mach numbers from 0.7 to 0.9. A subset of lamination parameters (LPs) and the number of laminate plies in each pre-defined direction (restricted to {0°,±45°, 90°}) serve as design variables. A bi-level hybrid optimization approach is employed, making use of a genetic algorithm (GA) and a subsequent gradient-based optimizer. Constraints are implemented to match lift requirements and prevent aeroelastic divergence, excessive deformations, airfoil stalling and structural failure. A permutation GA is then used to match specific composite ply stacking sequences to the optimum design variables with a limited number of manufacturing constraints considered for demonstration purposes. The optimization results in positive bend-twist coupling and a reduced structural mass. Results are compared to an uncoupled reference wing with quasi-isotropic layups and with panel thickness alone the design variables. For a typical geometry and a forward sweep of −25° at Mach 0.7, a wingbox mass reduction of 13 % was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson J (2011) Fundamentals of aerodynamics, 5th (in SI units) edn. McGraw-Hill

  • Armanios E, Badir A (1995) Free vibration analysis of anisotropic thin-walled closed-section beams. AIAA J 33(10)

  • Barbero EJ, Lopez-Anido R, Davalos JF (1993) On the mechanics of thin-walled laminated composite beams. J Compos Mater 27(8):806–29

    Article  Google Scholar 

  • Berci M, Gaskell P, Hewson R, Toropov V (2011) Multifidelity metamodel building as a route to aeroplastic optimization of flexible wings. P I Mech Eng C-J Mec:2115–2137

  • Berci M, Gaskell P, Hewson R, Toropov V (2013) A semi-analytical model for the combined aeroelastic behaviour and gust response of a flexible aerofoil. J Fluids Struct 38:3–21

    Article  Google Scholar 

  • Berci M, Toropov V, Hewson R, Gaskell P (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small uav. Struct Multidiscip O 50:683–699

    Article  Google Scholar 

  • Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Dover Publications Inc

  • Bloomfield M, Diaconu C, Weaver P (2009) On feasible regions of lamination parameters for lay-up optimization of laminated composites. P Roy Soc Lond A Mat 465:1123–1143

    Article  MathSciNet  MATH  Google Scholar 

  • Bloomfield M, Herencia J, Weaver P (2009) Enhanced two-level optimization of anisotropic laminated composite plates with strength and buckling constraints. Thin Walled Struct 47(11):1161–1167

    Article  Google Scholar 

  • Buhl H. (2012) Advanced aerospace materials. Springer, Berlin

  • Darecki M, Edelstenne C, Enders T, Fernandez E, Hartman P, Herteman JP, Kerkloh M, King I, Ky P, Mathieu M, Orsi G, Schotman G, Smith C, Wörner JD (2011) Flightpath 2050 - europe’s vision for aviation. Report, European Commission

  • Diaconu C, Sato M, Sekine H (2002) Feasible region in general design space of lamination parameters for laminated composites. AIAA J 40(3):559–565

    Article  Google Scholar 

  • Diaconu C, Sekine H (2004) Layup optimization for buckling of laminated composite shells with restricted layer angles. AIAA J 42(10):2153–2163

    Article  Google Scholar 

  • Dillinger J, Klimmek T, Abdalla M, Gürdal Z (2013) Stiffness optimization of composite wings with aeroelastic constraints. J Aircraft 50(4):1159–1168

    Article  Google Scholar 

  • Georgiou G, Vio G, Cooper J (2014) Aeroelastic tailoring and scaling using bacterial foraging optimisation. Struct Multidiscip O 50(1):81–99

    Article  MathSciNet  Google Scholar 

  • Gjelsvik A (1981) The theory of thin walled bars. Wiley

  • Hahn H, Tsai S (1980) Introduction to composite materials. Taylor & Francis

  • Hale J (2006) Boeing 787 from the ground up. QTR 04:06. boeing.com/commercial/aeromagazine

  • Hellard G (2008) Composites in airbus - a long story of innovations and experiences. Available at (10/04/2016). http://www.airbusgroup.com/dam/assets/airbusgroup/int/en/investor-relations/documents/2008/presentations/GIF2008/gif2008_workshop_composites_hellard.pdf

  • Herencia J, Haftka R, Weaver P, Friswell M (2008) Lay-up optimization of composite stiffened panels using linear approximations in lamination space. AIAA J 46(9):2387–2391

    Article  Google Scholar 

  • Herencia J, Weaver P, Friswell M (2007) Morphing wing design via aeroelastic tailoring. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics, and materials conference. Honolulu

  • Hodges D, Pierce G (2011) Introduction to structural dynamics and aeroelasticity, 2nd edn. Cambridge University Press, Cambridge

  • IJsselmuiden S, Abdalla M, Gürdal Z (2008) Implementation of strength-based failure criteria in the lamination parameter design space. AIAA J 46(7):1826–1834

    Article  Google Scholar 

  • Jebari R (2015) Composite stacking sequence optimisation and aeroelastic tailoring of a forward-swept wing. MSc. thesis. Imperial College London

  • Johnsen F (2013) Sweeping forward: developing & flight testing the Grumman X-29A forward swept wing research aircraft, NASA Aeronautics Book Series. Available at https://www.nasa.gov/sites/default/files/files/Sweeping_Forward.pdf

  • Jones R (1999) Mechanics of composite materials. Taylor & Francis

  • Kobelev V (2007) Sensitivity analysis of the linear nonconservative systems with fractional damping. Struct Multidiscip O 33:179–188

    Article  Google Scholar 

  • Lentz W, Armanios E (1998) Optimum coupling in thin-walled closed-section composite beams. J Aerosp Eng 11(3)

  • Librescu L, Khdeir A (1988) Aeroelastic divergence of swept-forward composite wings including warping restraint effect. AIAA J 26(11):1373–1377

    Article  Google Scholar 

  • Librescu L, Song O (1992) On the static aeroelastic tailoring of composite aircraft swept wings modelled as thin-walled beam structures. Compos Eng 2:497–512

    Article  Google Scholar 

  • Liu B, Haftka R, Akgun M (2000) Two-level composite wing structural optimization using response surfaces. Struct Multidiscip O 20(2):87–96

    Article  Google Scholar 

  • Liu B, Haftka R, Trompette P (2004) Maximization of buckling loads of composite panels using flexural lamination parameters. Struct Multidiscip O 26(1):28–36

    Article  Google Scholar 

  • Liu D, Toropov V, Barton D, Querin O (2015) Weight and mechanical performance optimization of blended composite wing panels using lamination parameters. Struct Multidiscip O 52(3):549–562

    Article  MathSciNet  Google Scholar 

  • Liu D, Toropov V, Querin O, Barton D (2011) Bilevel optimization of blended composite wing panels. J Aircraft 48(1):107–118

    Article  Google Scholar 

  • Lobitz D (2004) Aeroelastic stability predictions for a mw-sized blade. Wind Energy 7(3):211–224

    Article  Google Scholar 

  • Lottati I (1985) Flutter and divergence aeroelastic characteristics for composite forward swept cantilevered wing. J Aircraft 22(11):1001–1007

    Article  Google Scholar 

  • Massa J, Barbero E (1998) A strength of materials formulation for thin walled composite beams with torsion. J Compos Mater 32(17):1560–1594

    Article  Google Scholar 

  • MathWorks (2016). Matlab documentation - bvp4c. Available at (10/04/2016): http://uk.mathworks.com/help/matlab/ref/bvp4c.html

  • Raymer D (2006) Aircraft design: a conceptual approach, 4 edn. AIAA Education Series, American Institute of Aeronautics and Astronautics

  • Salim H, Davalos J (2005) Torsion of open and closed thin-walled laminated composite sections. J Compos Mater 39(6):497–524

    Article  Google Scholar 

  • Setoodeh S, Abdalla M, Gürdal Z (2006) Approximate feasible regions for lamination parameters. In: 11th AIAA/ISSMO Multidisciplinary analysis and optimization conference. Portsmouth

  • Toray-CFA (2015). T300 data sheet. Available at (02/09/2015): http://www.toraycfa.com/pdfs/T300DataSheet.pdf

  • Tsai S, Halpin J, Pagano N (1968) Invariant properties of composite materials. Technomic, Lancaster, pp 233–252

  • TUM (2009) Die Standardatmosphäre (ISA). Lehrstuhl f. Luftfahrttechnik. Available at (10/04/2016): https://campus.tum.de/tumonline/LV_TX.wbDisplayTerminDoc?pTerminDocNr=5322

  • Van Campen J (2011) Optimum lay-up design of variable stiffness composite structures. PhD thesis, Technische Universiteit Delft

  • Weisshaar T (1978) Aeroelastic stability and performance characteristics of aircraft with advanced composite sweptforward wing structures. Report, Virginia Polytechnic Institute and State University

  • Weisshaar T (1979) Forward swept wing static aeroelasticity. Report, Virginia Polytechnic Institute and State University

  • Weisshaar T (1980) Divergence of forward swept composite wings. J Aircraft 17(6):442–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Bach or Reda Jebari.

Additional information

Compliance with Ethical Standards

Funding Information

The authors would like to acknowledge funding of A Viti’s from the European Union as part of the AMEDEO Marie Curie Initial Training Network.

Appendices

Appendix A: Divergence calculation (Ritz method)

The matrix \([\boldsymbol {\mathcal {M}}]\) (21) is of the size (N 𝜃 + N w )×(N 𝜃 + N w ), and is given by:

$$\begin{array}{@{}rcl@{}} &&[\boldsymbol{\mathcal{M}}] = - [\boldsymbol{A}_{stiff}]^{-1} [\boldsymbol{A}_{aero}] \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} &&\left[\boldsymbol{A}_{stiff}\right] = \left[\begin{array}{cccccc} -\left[\boldsymbol{D}\right] & -\left[\boldsymbol{E}\right] \\ -\left[\boldsymbol{C}\right] & -\left[\boldsymbol{D}\right] \end{array}\right], \left[\boldsymbol{A}_{aero}\right] = \left[\begin{array}{cccccccc} \left[\boldsymbol{K}\right] & \left[\boldsymbol{Q}\right] \\ \left[\boldsymbol{R}\right] & \left[\boldsymbol{S}\right] \end{array}\right] \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} &&K_{ij} = -\sin (\Lambda) \cos (\Lambda) \widetilde{W}_{ij}^{(2)} \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} &&Q_{ij} = \cos^{3} (\Lambda) \: \widetilde{W}_{ij}^{(1)} \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} &&R_{ij} = -\sin(\Lambda) \cos(\Lambda) \: \widetilde{W}_{ij}^{(4)} - \sin^{2}(\Lambda) \cos(\Lambda)\left( \widetilde{W}_{ij}^{(6)} \!+ \widetilde{W}_{ij}^{(8)}\right) \\ \end{array} $$
(48)
$$\begin{array}{@{}rcl@{}} &&S_{ij} = \cos^{2}(\Lambda) \widetilde{W}_{ij}^{(3)} + \sin(\Lambda)\cos^{2}(\Lambda)\left( \widetilde{W}_{ij}^{(5)} + \widetilde{W}_{ij}^{(7)}\right) \end{array} $$
(49)

The matrices \([\boldsymbol {C}],[\boldsymbol {D}],[\boldsymbol {E}],[\widetilde {\boldsymbol {W}}^{(k),k=1...8}]\) are obtained as integrals of the chosen shape functions:

$$\begin{array}{@{}rcl@{}} &&C_{ij} = {{\int}_{0}^{l}} \! EI \psi_{i}^{\prime\prime} \psi_{j}^{\prime\prime} \, \mathrm{d}\bar{y} \end{array} $$
(50)
$$\begin{array}{@{}rcl@{}} &&D_{ij} = {{\int}_{0}^{l}} \! K \psi_{i}^{\prime\prime} \varphi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} &&E_{ij} = {{\int}_{0}^{l}} \! GJ \varphi_{i}^{\prime} \varphi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(52)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(1)} = {{\int}_{0}^{l}} \! e c c_{l\alpha} \varphi_{i} \varphi_{j} \, \mathrm{d}\bar{y} \end{array} $$
(53)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(2)} = {{\int}_{0}^{l}} \! e c c_{l\alpha} \varphi_{i} \psi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(54)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(3)} = {{\int}_{0}^{l}} \! c c_{l\alpha} \psi_{i} \varphi_{j} \, \mathrm{d}\bar{y} \end{array} $$
(55)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(4)} = {{\int}_{0}^{l}} \! c c_{l\alpha} \psi_{i} \psi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(56)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(5)} = {{\int}_{0}^{l}} \! (e c c_{l\alpha})^{\prime} \psi_{i} \varphi_{j} \, \mathrm{d}\bar{y} \end{array} $$
(57)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(6)} = {{\int}_{0}^{l}} \! (e c c_{l\alpha})^{\prime} \psi_{i} \psi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(58)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(7)} = {{\int}_{0}^{l}} \! e c c_{l\alpha} \psi_{i} \varphi_{j}^{\prime} \, \mathrm{d}\bar{y} \end{array} $$
(59)
$$\begin{array}{@{}rcl@{}} &&\widetilde{W}_{ij}^{(8)} = {{\int}_{0}^{l}} \! e c c_{l\alpha} \psi_{i} \psi_{j}^{\prime\prime} \, \mathrm{d}\bar{y} \end{array} $$
(60)

The largest positive eigenvalue of \([\boldsymbol {\mathcal {M}}]\) is then used to obtain the divergence dynamic pressure.

Appendix B: Lamination parameters

The material invariant matrices [Γ i ] (Van Campen 2011) and the material invariants U i (Jones 1999) are defined as:

$$ [\boldsymbol{\Gamma}_{0}] = \left[\begin{array}{ccccccccc} U_{1} & U_{4} & 0 \\ U_{4} & U_{1} & 0 \\ 0 & 0 & U_{5} \end{array}\right] ,[\boldsymbol{\Gamma}_{1}] = \left[\begin{array}{ccccccccc} U_{2} & 0 & 0 \\ 0 & -U_{2} & 0 \\ 0 & 0 & 0 \end{array}\right] $$
(61)
$$\begin{array}{@{}rcl@{}} &&[\boldsymbol{\Gamma}_{2}] = \frac{1}{2}\left[\begin{array}{ccccccccc} 0 & 0 & U_{2} \\ 0 & 0 & U_{2} \\ U_{2} & U_{2} & 0 \end{array}\right]\!, [\boldsymbol{\Gamma}_{3}] = \left[\begin{array}{ccccccccc} U_{3} & -U_{3} & 0 \\ -U_{3} & U_{3} & 0 \\ 0 & 0 & -U_{3} \end{array}\right] \end{array} $$
(62)
$$\begin{array}{@{}rcl@{}} &&[\boldsymbol{\Gamma}_{4}] = \left[\begin{array}{ccccccccc} 0 & 0 & U_{3} \\ 0 & 0 & -U_{3} \\ U_{3} & -U_{3} & 0 \end{array}\right] \end{array} $$
(63)
$$\begin{array}{@{}rcl@{}} &&U_{1}=\frac{1}{8} (3Q_{11} + 3Q_{22} + 2Q_{12} + 4Q_{66}) \end{array} $$
(64)
$$\begin{array}{@{}rcl@{}} &&U_{2} = \frac{1}{2}(Q_{11} - Q_{22}) \end{array} $$
(65)
$$\begin{array}{@{}rcl@{}} &&U_{3}=\frac{1}{8} (Q_{11} + Q_{22} - 2Q_{12} - 4Q_{66}) \end{array} $$
(66)
$$\begin{array}{@{}rcl@{}} &&U_{4}=\frac{1}{8} (Q_{11} + Q_{22} + 6Q_{12} - 4Q_{66}) \end{array} $$
(67)
$$\begin{array}{@{}rcl@{}} &&U_{5}=\frac{1}{8} (Q_{11} + Q_{22} - 2Q_{12} + 4Q_{66}) \end{array} $$
(68)

Since 𝜃 does not vary within a single lamina, the integral expressions(2830) can be simplified to obtain a summation over all plies within a laminate. By requiring that each ply be of the same thickness t, the following expressions can be derived, N being the total number of plies (Van Campen 2011):

$$\begin{array}{@{}rcl@{}} &&\left[\begin{array}{ccccccccc} {V_{1}^{A}}\\ {V_{2}^{A}}\\ {V_{3}^{A}}\\ {V_{4}^{A}} \end{array}\right] \!= \frac{1}{N} \sum\limits_{k=1}^{N} \left[\begin{array}{ccccccccc}\cos2\theta_{k} \\ \sin2\theta_{k} \\ \cos4\theta_{k} \\ \sin4\theta_{k} \end{array}\right] \end{array} $$
(69)
$$\begin{array}{@{}rcl@{}} &&\left[\begin{array}{ccccccccc} {V_{1}^{B}} \\ {V_{2}^{B}}\\ {V_{3}^{B}}\\ {V_{4}^{B}} \end{array}\right] \,=\, \frac{2}{N^{2}} \sum\limits_{k=1}^{N} \left( \left( \frac{N}{2}\!-k\,+\,1\right)^{2}\,-\,\left( \frac{N}{2}-k\right)^{2} \right) \left[\begin{array}{ccccccccc}\cos2\theta_{k} \\ \sin2\theta_{k} \\ \cos4\theta_{k} \\ \sin4\theta_{k} \end{array}\right]\\ \end{array} $$
(70)
$$\begin{array}{@{}rcl@{}} &&\left[\begin{array}{ccccccccc} {V_{1}^{D}} \\ {V_{2}^{D}} \\ {V_{3}^{D}} \\ {V_{4}^{D}} \end{array}\right] \!= \frac{4}{N^{3}} {\sum}_{k=1}^{N} \left( \left( \frac{N}{2}\,-\,k\,+\,1\right)^{3}\,-\,\left( \frac{N}{2}-k\right)^{3} \right) \left[\begin{array}{ccccccccc} \cos2\theta_{k} \\ \sin2\theta_{k} \\ \cos4\theta_{k} \\ \sin4\theta_{k} \end{array}\right]\\ \end{array} $$
(71)

Appendix C: Reduced stiffness matrix

For each panel, a reduced stiffness matrix is obtained by neglecting the normal stress N s and bending moment M s about s. The laminates considered here are symmetric. The following relations exist between panel resultant forces and mid-plane strains and between moments and curvatures (Barbero et al. 1993; Jones 1999):

$$\begin{array}{@{}rcl@{}} \left[\begin{array}{ccccccccc} N_{z} \\ N_{s} \\ N_{sz} \end{array}\right] = \left[\begin{array}{ccccccccc} \boldsymbol{A} \end{array}\right] \left[\begin{array}{ccccccccc} \epsilon_{z} \\ \epsilon_{s} \\ \gamma_{sz} \end{array}\right] , \left[\begin{array}{ccccccccc} M_{z} \\ M_{s} \\ M_{sz} \end{array}\right] = \left[\begin{array}{ccccccccc} \boldsymbol{D} \end{array}\right] \left[\begin{array}{ccccccccc} \kappa_{z} \\ \kappa_{s} \\ \kappa_{sz} \end{array}\right] \end{array} $$
(72)

Where [A] and [D] are the extensional and bending stiffness matrices of the panel considered, as defined by Jones (1999). The two matrices are inverted, their second row and column are neglected, and the 4×4 resulting matrices are inverted again. The expressions (72) hence become:

$$\begin{array}{@{}rcl@{}} \left[\begin{array}{ccccccccc} N_{z} \\ N_{sz} \end{array}\right] \,=\, \left[\begin{array}{ccccccccc} A_{z} A_{sz}\\A_{sz} A_{s} \end{array}\right] \left[\begin{array}{ccccccccc} \epsilon_{z} \\ \gamma_{sz} \end{array}\right] , \left[\begin{array}{ccccccccc} M_{z} \\ M_{sz} \end{array}\right] \,=\, \left[\begin{array}{ccccccccc} D_{z} D_{sz}\\D_{sz} D_{s} \end{array}\right]\! \left[\begin{array}{ccccccccc} \kappa_{z} \\ \kappa_{sz} \end{array}\right]\\ \end{array} $$
(73)

And the reduced matrices are:

$$\begin{array}{@{}rcl@{}} \left[\begin{array}{ccccccccc} X_{z} X_{sz}\\ X_{sz} X_{s} \end{array}\right] = \left[\begin{array}{ccccccccc} X_{11}-\frac{X_{12}^{2}}{X_{22}} & X_{13}-\frac{X_{12}X_{23}}{X_{22}} \\ X_{13}-\frac{X_{12}X_{23}}{X_{22}} & X_{33}-\frac{X_{23}^{2}}{X_{22}} \end{array}\right] \end{array} $$
(74)

Where X can be replaced by A or D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, C., Jebari, R., Viti, A. et al. Composite stacking sequence optimization for aeroelastically tailored forward-swept wings. Struct Multidisc Optim 55, 105–119 (2017). https://doi.org/10.1007/s00158-016-1477-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1477-3

Keywords

Navigation