Skip to main content
Log in

Marktübersicht: Roboterassistierte Endoprothetik

Aktuelle Robotersysteme, Lernkurven und Kostenanalyse

Market overview: Robotic-assisted arthroplasty

Current robotic systems, learning curve and cost analysis

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Die roboterassistierte Endoprothetik findet seit Jahren einen rasanten Einzug in die klinische Routine. Die führenden Endoprothesenhersteller haben mittlerweile alle Robotersysteme auf dem Markt platziert, welche sich jedoch technisch untereinander deutlich unterscheiden. Die Systeme werden aktuell nach dem Autonomiegrad (aktiv vs. semiaktiv vs. passiv) und der Daten‑/Bildquelle (Bildgestützt: CT vs. Röntgen, bildlos) eingeteilt. Einzelne Systeme bieten bereits jetzt schon die Möglichkeit, roboterassistiert oder navigiert Hüftendoprothesen zu implantieren. Im folgenden Übersichtsartikel sollen die aktuell führend verwendeten Robotersysteme vorgestellt und hinsichtlich der Eigenschaften verglichen werden. Im Weiteren soll auf die Analyse der Lernkurven für die unterschiedlichen Systeme und auf aktuell vorhandene Kostenanalysemodelle eingegangen werden sowie ein Ausblick auf künftige Entwicklungen und Herausforderungen gegeben werden.

Abstract

Robotic-assisted arthroplasty has been rapidly entering clinical routine in recent years. The leading endoprosthesis manufacturers have all meanwhile placed robotic systems on the market, which, however, differ significantly from one another technically. Current systems are currently classified according to the degree of autonomy (active vs. semi-active vs. passive) and the data/image source (image-based: CT vs. X‑ray, imageless). Some systems already offer the possibility of robotic-assisted or navigated implantation of hip endoprostheses. In the following review article, the currently leading robotic systems will be presented and compared with regard to their characteristics. Furthermore, the analysis of the learning curves for the different systems, currently available cost analysis models and an outlook on future developments and challenges will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

CAS:

Computerassistierten Chirurgie

EOC :

„Episode of care“

FDA :

Food and Drug Administration

HTEP :

Hüfttotalendoprothese

ICER :

„Incremental cost-effectiveness ratio“

KIS :

Krankenhausinformationssystem

PFJ :

Patellofemoralprothetik

PRD :

Endoprothesenregister Deutschland

PROM :

„Patient-reported outcome measures“

PSI :

„Patient specific instruments“

QALY :

„Quality adjusted life years“

RA :

„Robotic-assisted“

THA :

Hüfttotalendoprothetik

TKA :

Knietotalendoprothetik

UKA :

Schlittenprothetik

Literatur

  1. Ali M, Phillips D, Kamson A et al (2022) Learning curve of robotic-assisted total knee arthroplasty for non-fellowship-trained orthopedic surgeons. Arthroplast Today 13:194–198. https://doi.org/10.1016/j.artd.2021.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  2. Batailler C, White N, Ranaldi FM et al (2019) Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27:1232–1240. https://doi.org/10.1007/s00167-018-5081-5

    Article  PubMed  Google Scholar 

  3. Bell C, Grau L, Orozco F et al (2021) The successful implementation of the Navio robotic technology required 29 cases. J Robot Surg. https://doi.org/10.1007/s11701-021-01254-z

    Article  PubMed  Google Scholar 

  4. Bell SW, Anthony I, Jones B et al (2016) Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 98:627–635. https://doi.org/10.2106/JBJS.15.00664

    Article  PubMed  Google Scholar 

  5. Bellemans J, Vandenneucker H, Vanlauwe J (2007) Robot-assisted total knee arthroplasty. Clin Orthop Relat Res 464:111–116. https://doi.org/10.1097/BLO.0b013e318126c0c0

    Article  PubMed  Google Scholar 

  6. Chen Z, Bhowmik-Stoker M, Palmer M et al (2022) Time-based learning curve for robotic-assisted total knee arthroplasty: a multicenter study. J Knee Surg. https://doi.org/10.1055/s-0042-1744193

    Article  PubMed  Google Scholar 

  7. Cho K‑J, Seon J‑K, Jang W‑Y et al (2018) Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. BMC Musculoskelet Disord 19:266. https://doi.org/10.1186/s12891-018-2190-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Christen B, Tanner L, Ettinger M et al (2022) Comparative cost analysis of four different computer-assisted technologies to implant a total knee arthroplasty over conventional instrumentation. JPM 12:184. https://doi.org/10.3390/jpm12020184

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clement ND, Deehan DJ, Patton JT (2019) Robot-assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost-effective: a markov decision analysis. Bone Joint J 101:1063–1070. https://doi.org/10.1302/0301-620X.101B9.BJJ-2018-1658.R1

    Article  PubMed  Google Scholar 

  10. Cobb J, Henckel J, Gomes P et al (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br 88:188–197. https://doi.org/10.1302/0301-620X.88B2.17220

    Article  CAS  PubMed  Google Scholar 

  11. Cool CL, Jacofsky DJ, Seeger KA et al (2019) A 90-day episode-of-care cost analysis of robotic-arm assisted total knee arthroplasty. J Comp Eff Res 8:327–336. https://doi.org/10.2217/cer-2018-0136

    Article  PubMed  Google Scholar 

  12. Cotter EJ, Wang J, Illgen RL (2022) (2022) Comparative Cost Analysis of Robotic-Assisted and Jig-Based Manual Primary Total Knee Arthroplasty. J Knee Surg 35(02):176–184. https://doi.org/10.1055/s-0040-1713895

    Article  PubMed  Google Scholar 

  13. Doan GW, Courtis RP, Wyss JG et al (2022) Image-free robotic-assisted total knee arthroplasty improves implant alignment accuracy: a cadaveric study. J Arthroplasty 37:795–801. https://doi.org/10.1016/j.arth.2021.12.035

    Article  PubMed  Google Scholar 

  14. EPRD Endoprothesenregister Deutschland (2021) EPRD Jahresbericht 2021. EPRD gGmbH

    Google Scholar 

  15. Fang CJ, Mazzocco JC, Sun DC, Shaker JM, Talmo CT, Mattingly DA, Smith EL (2022) Total Knee Arthroplasty Hospital Costs by Time-Driven Activity-Based Costing: Robotic vs Conventional. Arthroplast Today. https://doi.org/10.1016/j.artd.2021.11.008

    Article  PubMed  Google Scholar 

  16. Figueroa F, Wakelin E, Twiggs J, Fritsch B (2019) Comparison between navigated reported position and postoperative computed tomography to evaluate accuracy in a robotic navigation system in total knee arthroplasty. Knee 26:869–875. https://doi.org/10.1016/j.knee.2019.05.004

    Article  PubMed  Google Scholar 

  17. Grau L, Lingamfelter M, Ponzio D et al (2019) Robotic arm assisted total knee arthroplasty workflow optimization, operative times and learning curve. Arthroplast Today 5:465–470. https://doi.org/10.1016/j.artd.2019.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grimberg A, Jansson V (2020) EPRD-Jahresbericht 2020. EPRD gGmbH

    Google Scholar 

  19. Hampp EL, Sodhi N, Scholl L et al (2019) Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach: a blinded assessment. Bone Joint Res 8:495–501. https://doi.org/10.1302/2046-3758.810.BJR-2019-0129.R1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hayashi S, Hashimoto S, Kuroda Y et al (2021) Robotic-arm assisted THA can achieve precise cup positioning in developmental dysplasia of the hip : a case control study. Bone Joint Res 10:629–638. https://doi.org/10.1302/2046-3758.1010.BJR-2021-0095.R1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hepinstall M, Mota F, Naylor B et al (2021) Robotic-assisted total hip arthroplasty in patients who have developmental hip dysplasia. Surg Technol Int 39:338–347

    Article  Google Scholar 

  22. Honl M, Dierk O, Gauck C et al (2003) Comparison of robotic-assisted and manual implantation of a primary total HIP replacement: a prospective study. J Bone Joint Surg Am 85:1470–1478. https://doi.org/10.2106/00004623-200308000-00007

    Article  PubMed  Google Scholar 

  23. Iñiguez M, Negrín R, Duboy J et al (2021) Robot-assisted unicompartmental knee arthroplasty: increasing surgical accuracy? A cadaveric study. J Knee Surg 34:628–634. https://doi.org/10.1055/s-0039-1698771

    Article  PubMed  Google Scholar 

  24. Jacofsky DJ, Allen M (2016) Robotics in arthroplasty: a comprehensive review. J Arthroplasty 31:2353–2363. https://doi.org/10.1016/j.arth.2016.05.026

    Article  PubMed  Google Scholar 

  25. Kamath AF, Durbhakula SM, Pickering T et al (2021) Improved accuracy and fewer outliers with a novel CT-free robotic THA system in matched-pair analysis with manual THA. J Robotic Surg. https://doi.org/10.1007/s11701-021-01315-3

    Article  Google Scholar 

  26. Kayani B, Konan S, Huq SS et al (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 27:1132–1141. https://doi.org/10.1007/s00167-018-5138-5

    Article  PubMed  Google Scholar 

  27. Kayani B, Konan S, Huq SS et al (2021) The learning curve of robotic-arm assisted acetabular cup positioning during total hip arthroplasty. Hip Int 31:311–319. https://doi.org/10.1177/1120700019889334

    Article  PubMed  Google Scholar 

  28. Kayani B, Konan S, Pietrzak JRT, Haddad FS (2018) Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplasty 33:2496–2501. https://doi.org/10.1016/j.arth.2018.03.042

    Article  PubMed  Google Scholar 

  29. Kim K‑I, Kim D‑K, Juh H‑S et al (2016) Robot-assisted total knee arthroplasty in haemophilic arthropathy. Haemophilia 22:446–452. https://doi.org/10.1111/hae.12875

    Article  PubMed  Google Scholar 

  30. Kolodychuk N, Su E, Alexiades MM et al (2021) Can robotic technology mitigate the learning curve of total hip arthroplasty? Bone Jt Open 2:365–370. https://doi.org/10.1302/2633-1462.26.BJO-2021-0042.R1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koulalis D, O’Loughlin PF, Plaskos C et al (2011) Sequential versus automated cutting guides in computer-assisted total knee arthroplasty. Knee 18:436–442. https://doi.org/10.1016/j.knee.2010.08.007

    Article  PubMed  Google Scholar 

  32. Kurtz SM, Lau E, Ong K et al (2009) Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res 467:2606–2612. https://doi.org/10.1007/s11999-009-0834-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liow MHL, Chin PL, Pang HN et al (2017) THINK surgical TSolution-One ® (Robodoc) total knee arthroplasty. SICOT J 3:63. https://doi.org/10.1051/sicotj/2017052

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liow MHL, Chin PL, Tay KJD et al (2014) Early experiences with robot-assisted total knee arthroplasty using the DigiMatchTM ROBODOC® surgical system. Singapore Med J 55:529–534. https://doi.org/10.11622/smedj.2014136

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liow MHL, Goh GS‑H, Wong MK et al (2017) Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc 25:2942–2951. https://doi.org/10.1007/s00167-016-4076-3

    Article  PubMed  Google Scholar 

  36. MacDessi SJ, Wood JA, Diwan AD et al (2021) Surgeon-defined assessment is a poor predictor of knee balance in total knee arthroplasty: a prospective, multicenter study. Knee Surg Sports Traumatol Arthrosc 29:498–506. https://doi.org/10.1007/s00167-020-05925-6

    Article  PubMed  Google Scholar 

  37. Mahure SA, Teo GM, Kissin YD et al (2021) Learning curve for active robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06452-8

    Article  PubMed  Google Scholar 

  38. Marchand KB, Ehiorobo J, Mathew KK et al (2022) Learning curve of robotic-assisted total knee arthroplasty for a high-volume surgeon. J Knee Surg 35:409–415. https://doi.org/10.1055/s-0040-1715126

    Article  PubMed  Google Scholar 

  39. Moschetti WE, Konopka JF, Rubash HE, Genuario JW (2016) Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplasty 31:759–765. https://doi.org/10.1016/j.arth.2015.10.018

    Article  PubMed  Google Scholar 

  40. Nakamura N, Sugano N, Nishii T et al (2010) A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res 468:1072–1081. https://doi.org/10.1007/s11999-009-1158-2

    Article  PubMed  Google Scholar 

  41. Nherera LM, Verma S, Trueman P, Jennings S (2020) Early economic evaluation demonstrates that noncomputerized tomography robotic-assisted surgery is cost-effective in patients undergoing unicompartmental knee arthroplasty at high-volume orthopaedic centres. Adv Orthop 2020:3460675. https://doi.org/10.1155/2020/3460675

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park SE, Lee CT (2007) Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 22:1054–1059. https://doi.org/10.1016/j.arth.2007.05.036

    Article  PubMed  Google Scholar 

  43. Parratte S, Price AJ, Jeys LM et al (2019) Accuracy of a new robotically assisted technique for total knee arthroplasty: a cadaveric study. J Arthroplasty 34:2799–2803. https://doi.org/10.1016/j.arth.2019.06.040

    Article  PubMed  Google Scholar 

  44. Patel K, Judd H, Harm RG et al (2022) Robotic-assisted total knee arthroplasty: is there a maximum level of efficiency for the operating surgeon? J Orthop 31:13–16. https://doi.org/10.1016/j.jor.2022.02.015

    Article  PubMed  Google Scholar 

  45. Pierce J, Needham K, Adams C et al (2021) Robotic-assisted total hip arthroplasty: an economic analysis. J Comp Eff Res 10:1225–1234. https://doi.org/10.2217/cer-2020-0255

    Article  PubMed  Google Scholar 

  46. Ponzio DY, Lonner JH (2015) Preoperative mapping in unicompartmental knee arthroplasty using computed tomography scans is associated with radiation exposure and carries high cost. J Arthroplasty 30:964–967. https://doi.org/10.1016/j.arth.2014.10.039

    Article  PubMed  Google Scholar 

  47. Rajan PV, Khlopas A, Klika A et al (2022) The cost-effectiveness of robotic-assisted versus manual total knee arthroplasty: a Markov model-based evaluation. J Am Acad Orthop Surg 30:168–176. https://doi.org/10.5435/JAAOS-D-21-00309

    Article  PubMed  Google Scholar 

  48. Remily EA, Nabet A, Sax OC et al (2021) Impact of robotic assisted surgery on outcomes in total hip arthroplasty. Arthroplast Today 9:46–49. https://doi.org/10.1016/j.artd.2021.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rossi SMP, Sangaletti R, Perticarini L et al (2022) High accuracy of a new robotically assisted technique for total knee arthroplasty: an in vivo study. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06800-8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Savov P, Tuecking L‑R, Windhagen H et al (2021) Imageless robotic handpiece-assisted total knee arthroplasty: a learning curve analysis of surgical time and alignment accuracy. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04036-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Savov P, Tuecking L‑R, Windhagen H et al (2021) Robotics improves alignment accuracy and reduces early revision rates for UKA in the hands of low-volume UKA surgeons. Arch Orthop Trauma Surg 141:2139–2146. https://doi.org/10.1007/s00402-021-04114-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Scholes C, Sahni V, Lustig S et al (2014) Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation. Knee Surg Sports Traumatol Arthrosc 22:660–665. https://doi.org/10.1007/s00167-013-2670-1

    Article  PubMed  Google Scholar 

  53. Schulz AP, Seide K, Queitsch C et al (2007) Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures: evaluation of total hip replacement using the Robodoc system. Int J Med Robotics Comput Assist Surg 3:301–306. https://doi.org/10.1002/rcs.161

    Article  Google Scholar 

  54. Shalhoub S, Lawrence JM, Keggi JM et al (2019) Imageless, robotic-assisted total knee arthroplasty combined with a robotic tensioning system can help predict and achieve accurate postoperative ligament balance. Arthroplast Today 5:334–340. https://doi.org/10.1016/j.artd.2019.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  55. Siddiqi A, Horan T, Molloy RM et al (2021) A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev 6:252–269. https://doi.org/10.1302/2058-5241.6.200071

    Article  PubMed  PubMed Central  Google Scholar 

  56. Siebert W, Mai S, Kober R, Heeckt PF (2002) Technique and first clinical results of robot-assisted total knee replacement. Knee 9:173–180. https://doi.org/10.1016/s0968-0160(02)00015-7

    Article  PubMed  Google Scholar 

  57. Sires JD, Craik JD, Wilson CJ (2021) Accuracy of bone resection in MAKO total knee robotic-assisted surgery. J Knee Surg 34:745–748. https://doi.org/10.1055/s-0039-1700570

    Article  PubMed  Google Scholar 

  58. Song E‑K, Seon J‑K, Park S‑J et al (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19:1069–1076. https://doi.org/10.1007/s00167-011-1400-9

    Article  PubMed  Google Scholar 

  59. Song E‑K, Seon J‑K, Yim J‑H et al (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471:118–126. https://doi.org/10.1007/s11999-012-2407-3

    Article  PubMed  Google Scholar 

  60. St Mart J‑P, de Steiger RN, Cuthbert A, Donnelly W (2020) The three-year survivorship of robotically assisted versus non-robotically assisted unicompartmental knee arthroplasty: a study from the Australian orthopaedic association national joint replacement registry. Bone Joint J 102:319–328. https://doi.org/10.1302/0301-620X.102B3.BJJ-2019-0713.R1

    Article  PubMed  Google Scholar 

  61. Steffens D, Karunaratne S, McBride K, Gupta S, Horsley M, Fritsch B (2022) Implementation of robotic-assisted total knee arthroplasty in the public health system: a comparative cost analysis. International Orthopaedics 46(3):481–488. https://doi.org/10.1007/s00264-021-05203-1

    Article  PubMed  Google Scholar 

  62. Sultan AA, Samuel LT, Khlopas A et al (2019) Robotic-arm assisted total knee arthroplasty more accurately restored the posterior condylar offset ratio and the Insall-Salvati index compared to the manual technique; a cohort-matched study. Surg Technol Int 34:409–413

    PubMed  Google Scholar 

  63. Sweet MC, Borrelli GJ, Manawar SS, Miladore N (2021) Comparison of outcomes after robotic-assisted or conventional total hip arthroplasty at a minimum 2‑year follow-up: a systematic review. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.20.00144

    Article  PubMed  Google Scholar 

  64. Thiengwittayaporn S, Uthaitas P, Senwiruch C et al (2021) Imageless robotic-assisted total knee arthroplasty accurately restores the radiological alignment with a short learning curve: a randomized controlled trial. International Orthopaedics (SICOT) 45:2851–2858. https://doi.org/10.1007/s00264-021-05179-y

    Article  Google Scholar 

  65. Thomas TL, Goh GS, Nguyen MK, Lonner JH (2022) Pin-related complications in computer navigated and robotic-assisted knee arthroplasty: a systematic review. J Arthroplasty. https://doi.org/10.1016/j.arth.2022.05.012

    Article  PubMed  Google Scholar 

  66. Tompkins GS, Sypher KS, Griffin TM, Duwelius PD (2021) Can a reduction in revision rates make robotic total knee arthroplasty cost neutral with manual total knee arthroplasty at ten-year follow-up? An episode cost analysis. J Arthroplasty. https://doi.org/10.1016/j.arth.2021.10.030

    Article  PubMed  Google Scholar 

  67. Tuecking L‑R, Savov P, Windhagen H et al (2021) Imageless robotic-assisted revision arthroplasty from UKA to TKA: surgical technique and case-control study compared with primary robotic TKA. Orthopade 50:1018–1025. https://doi.org/10.1007/s00132-021-04182-w

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vaidya NV, Deshpande AN, Panjwani T et al (2020) Robotic-assisted TKA leads to a better prosthesis alignment and a better joint line restoration as compared to conventional TKA: a prospective randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06353-2

    Article  PubMed  Google Scholar 

  69. Vanlommel L, Neven E, Anderson MB et al (2021) The initial learning curve for the ROSA® Knee System can be achieved in 6–11 cases for operative time and has similar 90-day complication rates with improved implant alignment compared to manual instrumentation in total knee arthroplasty. J Exp Orthop 8:119. https://doi.org/10.1186/s40634-021-00438-8

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yeroushalmi D, Feng J, Nherera L et al (2022) Early economic analysis of robotic-assisted unicondylar knee arthroplasty may be cost effective in patients with end-stage osteoarthritis. J Knee Surg 35:39–46. https://doi.org/10.1055/s-0040-1712088

    Article  Google Scholar 

  71. Yun AG, Qutami M, Chen C‑HM, Pasko KBD (2020) Management of failed UKA to TKA: conventional versus robotic-assisted conversion technique. Knee Surg Relat Res 32:38. https://doi.org/10.1186/s43019-020-00056-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-René Tuecking.

Ethics declarations

Interessenkonflikt

L.-R. Tuecking, M. Ettinger, H. Windhagen und P. Savov weisen auf folgende Beziehungen hin: Forschung und Lehre für Smith & Nephew, Stryker, Aesculap, Medacta.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuecking, LR., Ettinger, M., Windhagen, H. et al. Marktübersicht: Roboterassistierte Endoprothetik. Orthopädie 51, 727–738 (2022). https://doi.org/10.1007/s00132-022-04286-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-022-04286-x

Schlüsselwörter

Keywords

Navigation