Skip to main content
Log in

The shallow marine VMS copper deposit of Yushui, Eastern Guangdong, South China: evidence from geology, geochronology, and geochemistry

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Many massive sulfide deposits have been discovered in the Upper Paleozoic rift-related volcaniclastic sequence in South China, among which the Yushui copper deposit is the most important due to its high grade. The deposit has been variably attributed as SEDEX (sedimentary exhalative) or MVT (Mississippi valley type). The Yushui copper deposit in Guangdong (South China) contains stratiform bornite-chalcopyrite orebodies (102.1 kt Cu @ 3.5%, 186.6 kt Pb @ 4.29%, 117.6 kt Zn @ 2.91%, and 339 t Ag @ 112 g/t) developed along the contact between Upper Carboniferous dolostone and Lower Carboniferous pebbly quartz sandstone, which indicates a shallow marine deposition environment. The Yushui deposit comprises an upper massive sulfide orebody and a lower stockwork orebody with intense alteration. In this study, we newly identified Carboniferous tuffs and syn-volcanic faults in the footwall, and exhalites in the hanging-wall. Hematite from the Cu ores yielded a U-Pb age of 320 ± 15 Ma (MSWD = 2.1, n = 57), and hydrothermal dolomite yielded a Sm-Nd isochron age of 308.1 ± 4.6 Ma (n = 7; MSWD = 0.94), which constrains the timing of mineralization at Yushui. These ages are coeval with the Carboniferous host rocks. Combining the evidence from the geological features (syn-volcanic faults, volcanic rocks, exhalites) and hematite trace element compositions, we suggest that the Yushui is a shallow marine VMS (volcanogenic massive sulfide) deposit. The Sr-Nd isotope composition of hydrothermal dolomite (εNd ~−12) indicates that the ore-forming materials were originated from the crustal basement. The Yushui copper deposit was likely formed during the Late Carboniferous continental back-arc extension in eastern South China. The regional extension may have caused enhanced heat flow, which promoted fluid convection in the basement rocks. In addition, we suggest that volcanic rocks and disseminated chalcopyrite-pyrite mineralization in the Lower Carboniferous quartz sandstone and exhalites are good indicators for regional VMS prospecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aggarwal PK, Nesbitt BE (1984) Geology and geochemistry of the Chu Chua massive sulfide deposit, British Columbia. Econ Geol 79:815–825. https://doi.org/10.2113/gsecongeo.79.5.815

    Article  CAS  Google Scholar 

  • Apukhtina OB, Kamenetsky VS, Ehrig K, Kamenetsky MB, Maas R, Thompson J, McPhie J, Ciobanu CL, Cook NJ (2017) Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia*. Econ Geol 112:1531–1542. https://doi.org/10.5382/econgeo.2017.4520

    Article  Google Scholar 

  • Arango-Galván C, Prol-Ledesma RM, Flores-Márquez EL, Canet C, Villanueva Estrada RE (2011) Shallow submarine and subaerial, low-enthalpy hydrothermal manifestations in Punta Banda, Baja California, Mexico: geophysical and geochemical characterization. Geothermics 40:102–111. https://doi.org/10.1016/j.geothermics.2011.03.002

    Article  ADS  CAS  Google Scholar 

  • Baker ET (2004) German CRJM-ORHIBtL, Oceans GMS. On the global distribution of hydrothermal vent fields. 148:245–266

    Google Scholar 

  • Barrat JA, Boulègue J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochimica et Cosmochimica Acta 64:287–298. https://doi.org/10.1016/S0016-7037(99)00294-X

    Article  ADS  CAS  Google Scholar 

  • Barrie CT, Hannington MD (1999) Classification of volcanic-associated massive sulfide deposits based on host-rock composition. Econ Geol

  • Bonatti E, Fisher DE, Joensuu O, Rydell HS, Beyth M (1972) Iron-manganese-barium deposit from the northern Afar Rift (Ethiopia). Econ Geol 67:717–730. https://doi.org/10.2113/gsecongeo.67.6.717

    Article  CAS  Google Scholar 

  • Botz R, Winckler G, Bayer R, Schmitt M, Schmidt M, Garbe-Schönberg D, Stoffers P, Kristjansson JK (1999) Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, north Iceland. Earth Planet Sci Lett 171:83–93. https://doi.org/10.1016/s0012-821x(99)00128-4

    Article  ADS  CAS  Google Scholar 

  • Boutroy E, Dare SAS, Beaudoin G, Barnes SJ, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration. J Geochem Explor 145:64–81. https://doi.org/10.1016/j.gexplo.2014.05.010

  • Bureau of Geology and Mineral Resource of Guangdong (1988) Regional geology of Guangdong Province. Beijing: Geological Publishing House, 795-825(in chinese)

  • Cai JH, Liu JQ (1996) Characteristics of structures and prospecting targets in the metallogenic province at the south sector of Yongmei depression, Guangdong. Geotectonica et Metallogenia 4:333–339 (in Chinese with English abstract)

    Google Scholar 

  • Cai JX, Zhang KJ (2009) A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics 467:35–43. https://doi.org/10.1016/j.tecto.2008.12.003

    Article  ADS  Google Scholar 

  • Camprubí A, Canet C, Rodríguez-Díaz AA, Prol-Ledesma RM, Blanco-Florido D, Villanueva RE, López-Sánchez A (2007) Geology, ore deposits and hydrothermal venting in Bahía Concepción, Baja California Sur, Mexico. Island Arc 17:6–25. https://doi.org/10.1111/j.1440-1738.2007.00586.x

    Article  CAS  Google Scholar 

  • Canet C, Prol-Ledesma RM, Proenza JA, Rubio-Ramos MA, Forrest MJ, Torres-Vera MA, Rodríguez-Díaz AA (2005) Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in Bahía Concepción, Baja California Sur, Mexico. Chemical Geology 224:96–112. https://doi.org/10.1016/j.chemgeo.2005.07.023

    Article  ADS  CAS  Google Scholar 

  • Cathles LM (2010) What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits. Mineralium Deposita 46:639–657. https://doi.org/10.1007/s00126-010-0292-9

    Article  ADS  CAS  Google Scholar 

  • Chen BH, Guo R, Yu SY (1994) Metallogenic features and genesis of Cu-polymetallic deposit of Yushui field Guangdong. Geol Explor 3:20–25 (in Chinese with English abstract)

    Google Scholar 

  • Chen H, Clark AH, Kyser TK, Ullrich TD, Baxter R, Chen Y, Moody TC (2010) Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, south-central Peru. Econ Geol 105:155–185. https://doi.org/10.2113/gsecongeo.105.1.155

    Article  CAS  Google Scholar 

  • Chen H, Ni P, Wang RC, Wang GG, Zhao KD, Ding JY, Zhao C, Cai YT, Xu YF (2015) A combined fluid inclusion and S-Pb isotope study of the Neoproterozoic Pingshui volcanogenic massive sulfide Cu–Zn deposit, Southeast China. Ore Geol Rev 66:388–402. https://doi.org/10.1016/j.oregeorev.2014.11.002

    Article  Google Scholar 

  • Chen J, Montañez IP, Qi Y, Shen S, Wang X (2018) Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology 46:395–398. https://doi.org/10.1130/g40093.1

    Article  ADS  CAS  Google Scholar 

  • Chen F, Deng J, Wang Q, Huizenga JM, Li G, Gu Y (2020) LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes. Ore Geol Rev 117. https://doi.org/10.1016/j.oregeorev.2020.103309

  • Chen MH, Ke CH, Tian YF, Chen G, Ma KZ, Ma SX, Peng YX, Zhang W (2021) Sedimentary-exhalative massive sulfide deposits in shallow marine environment, a case study Yushui copper deposit Guangdong Province. Acta Geologica Sinica 95(06):1774–1791. https://doi.org/10.19762/j.cnki.dizhixuebao.2021149

  • Chen G, Chen M, Ke C, Tang Y (2023) Paleozoic VMS-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Yushui copper deposit, Eastern Guangdong. South China. Ore Geol Rev 158:105498. https://doi.org/10.1016/j.oregeorev.2023.105498

    Article  Google Scholar 

  • Cheng XY, Zhu XY, Wang YL, Wang H, Jiang BB (2014) Discussion on the genesis of Yushui Cu-polymetallic mineral deposits in Meizhou Guangdong. Miner Depos 33(S1):373–374 (in Chinese with English abstract)

    Google Scholar 

  • Cherkashov G (2011) Seafloor massive sulfide deposits discovered at the Mid-Atlantic Ridge - potential target for the ocean mining in the area. OCEANS’11 MTS/IEEE KONA. https://doi.org/10.23919/oceans.2011.6106978.

  • Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambr Res 238:129–147. https://doi.org/10.1016/j.precamres.2013.10.007

    Article  ADS  CAS  Google Scholar 

  • Cocks LRM, Torsvik TH (2013) The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Rev 117:40–79. https://doi.org/10.1016/j.earscirev.2012.12.001

    Article  ADS  Google Scholar 

  • Courtney-Davies L, Zhu Z, Ciobanu C, Wade B, Cook N, Ehrig K, Cabral A, Kennedy A (2016) Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 6. https://doi.org/10.3390/min6030085

  • Courtney-Davies L, Tapster SR, Ciobanu CL, Cook NJ, Verdugo-Ihl MR, Ehrig KJ, Kennedy AK, Gilbert SE, Condon DJ, Wade BP (2019) A multi-technique evaluation of hydrothermal hematite U Pb isotope systematics: implications for ore deposit geochronology. Chem Geol 513:54–72. https://doi.org/10.1016/j.chemgeo.2019.03.005

    Article  ADS  CAS  Google Scholar 

  • Courtney-Davies L, Ciobanu CL, Tapster SR, Cook NJ, Ehrig K, Crowley JL, Verdugo-Ihl MR, Wade BP, Condon DJ (2020) Opening the magmatic-hydrothermal window: high-precision U-Pb geochronology of the Mesoproterozoic Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 115:1855–1870. https://doi.org/10.5382/econgeo.4772

    Article  Google Scholar 

  • Crane K, Hecker B, Golubev V (1991) Heat flow and hydrothermal vents in Lake Baikal, U.S.S.R. 72:585-589. https://doi.org/10.1029/90EO00409

  • Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochimica et Cosmochimica Acta 88:27–50. https://doi.org/10.1016/j.gca.2012.04.032

    Article  ADS  CAS  Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Depos 49:785–796. https://doi.org/10.1007/s00126-014-0529-0

    Article  ADS  CAS  Google Scholar 

  • de Ronde CEJ, Walker SL, Ditchburn RG, Tontini FC, Hannington MD, Merle SG, Timm C, Handler MR, Wysoczanski RJ, Dekov VM, Kamenov GD, Baker ET, Embley RW, Lupton JE, Stoffers P (2014) The anatomy of a buried submarine hydrothermal system, Clark Volcano, Kermadec Arc, New Zealand. Econ Geol 109:2261–2292. https://doi.org/10.2113/econgeo.109.8.2261

    Article  Google Scholar 

  • Dekov VM, Savelli C (2004) Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Marine Geol 204:161–185. https://doi.org/10.1016/s0025-3227(03)00355-4

    Article  ADS  CAS  Google Scholar 

  • Dekov VM, Kamenov GD, Abrasheva MD, Capaccioni B, Munnik F (2013) Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea Platform (Aeolian Arc, Tyrrhenian Sea). Chem Geol 335:136–148. https://doi.org/10.1016/j.chemgeo.2012.10.048

    Article  ADS  CAS  Google Scholar 

  • Ding T, Ma D, Lu J, Zhang R (2018) Magnetite as an indicator of mixed sources for W-Mo–Pb–Zn mineralization in the Huangshaping polymetallic deposit, southern Hunan Province, China. Ore Geol Rev 95:65–78. https://doi.org/10.1016/j.oregeorev.2018.02.019

    Article  Google Scholar 

  • Domeier M, Torsvik TH (2014) Plate tectonics in the late Paleozoic. Geosci Front 5:303–350. https://doi.org/10.1016/j.gsf.2014.01.002

    Article  Google Scholar 

  • Dong R, Wang H, Li W, Yan Q-H, Zhang X (2021) The geology, magnetite geochemistry, and oxygen isotopic composition of the Akesayi skarn iron deposit, Western Kunlun Orogenic Belt, Xinjiang, northwest China: implications for ore genesis. Ore Geology Reviews 130:103854. https://doi.org/10.1016/j.oregeorev.2020.103854

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335. https://doi.org/10.1007/s00126-011-0334-y

    Article  ADS  CAS  Google Scholar 

  • Elders WA (1979) The geological background of the geothermal fields of the Salton Trough. In Elders, W A (eds.), Geology and geothermics of the Salton trough. University of California (River-side), Campus Museum Contribution 5, Geological Society of America Guidebook, Field Trip, 7:108

  • Fa H and Chaohua, G (1983) Makeng iron deposit-a submarine volcanic hydrothermal- sedimentary ore: Science in China, Ser.B. 1075-1087.

  • Falkenberg JJ, Keith M, Haase KM, Bach W, Klemd R, Strauss H, Yeo IA, Rubin KH, Storch B, Anderson MO (2021) Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems. Geochimica et Cosmochimica Acta 307:105–132. https://doi.org/10.1016/j.gca.2021.05.047

    Article  ADS  CAS  Google Scholar 

  • Fan HR, Hu FF, Yang KF, Pirajno F, Liu X, Wang KY (2014) Integrated U-Pb and Sm–Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China. Ore Geol Rev 63:510–519. https://doi.org/10.1016/j.oregeorev.2014.03.005

    Article  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. Econ Geol. https://doi.org/10.5382/av100.17

    Article  Google Scholar 

  • Fricke H, Giere O, Stetter K, Alfredsson GA, Kristjansson JK, Stoffers P, Svavarsson J (1989) Hydrothermal vent communities at the shallow subpolar Mid-Atlantic Ridge. Marine Biol 102:425–429. https://doi.org/10.1007/bf00428495

    Article  Google Scholar 

  • Fryer BJ, Taylor RP (1984) Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan. Geology 12:479–482. https://doi.org/10.1130/0091-7613

    Article  ADS  CAS  Google Scholar 

  • Fu J, Liang X, Wang C, Zhou Y, Jiang Y, Dong C (2017) The Xitieshan volcanic sediment-hosted massive sulfide deposit, North Qaidam, China: Geology, structural deformation and geochronology. Ore Geol Rev 80:923–946. https://doi.org/10.1016/j.oregeorev.2016.08.027

    Article  Google Scholar 

  • Galley AG, Hannington MD, Jonasson IRH, Jonasson IR (2007) Volcanogenic massive sulphide deposits. doi: https://silverspruceresources.com/site/assets/files/5585/vms-deposits-canada-review.pdf.

  • Gao B, Chen J, Huang X, Xin H, Zheng Q (2022) Resolving the tectonic setting of South China in the Late Paleozoic. Geophys Res Lett. 49:e2022 GL099809. https://doi.org/10.1029/2022GL099809

    Article  Google Scholar 

  • Geological Team of the Bereau of geology and mineral resources of Guangdong Province (1988) Detailed geological report of Yushui copper polymetallic mining area in Meixia County. Unpublished, Guangdong Province

    Google Scholar 

  • German CR, Petersen S, Hannington MD (2016) Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chem Geol 420:114–126. https://doi.org/10.1016/j.chemgeo.2015.11.006

    Article  ADS  CAS  Google Scholar 

  • Gibson HL (2007) The VMS model: advances and application to exploration targeting. Ore Deposits and Exploration Technology

  • Goodfellow WD, McCutcheon SR, Goodfellow WD, McCutcheon SR, Peter JM (2003) Geologic and genetic attributes of volcanic sediment-hosted massive sulfide deposits of the Bathurst Mining Camp, Northern New Brunswick—a synthesis, massive sulfide deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Soc Econ Geol

  • Grenne T, Slack JF (2005) Geochemistry of jasper beds from the Ordovician Løkken ophiolite, Norway: origin of proximal and distal siliceous exhalites. Econ Geol 100:1511–1527. https://doi.org/10.2113/gsecongeo.100.8.1511

    Article  CAS  Google Scholar 

  • Gu LX, Xu KQ (1986) On the South China type massive sulfide ore deposits formed in marine fault depression troughs on the continental crust. Miner Depos 5(2):1–13 (in Chinese with English abstract)

    MathSciNet  CAS  Google Scholar 

  • Gu L, Khin Z, Hu W, Zhang K, Ni P, He J, Xu Y, Lu J, Lin C (2007) Distinctive features of Late Paleozoic massive sulfide deposits in South China. Ore Geol Rev 31:107–138. https://doi.org/10.1016/j.oregeorev.2005.01.002

    Article  Google Scholar 

  • Guo WM (2010) Metallogenic mechanism, petrogeochemistry and mineralogy of Dongguashan deposit in Tongling, Anhui Province (doctoral dissertation). Supervisor: Lu J J. Nanjing: Nanjing University (in Chinese with English abstract)

  • Guo W, Lu J, Jiang S, Zhang R, Qi L (2011) Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: geochronological evidence for submarine exhalative sedimentation. Chin Sci Bull 56:3860–3865. https://doi.org/10.1007/s11434-011-4770-y

    Article  CAS  Google Scholar 

  • Halley SW, Roberts RH (1997) Henty; a shallow-water gold-rich volcanogenic massive sulfide deposit in western Tasmania. Econ Geol 92:438–447. https://doi.org/10.2113/gsecongeo.92.4.438

    Article  CAS  Google Scholar 

  • Hamilton PJ, O’Nions RK, Evensen NM (1977) Sm-Nd dating of Archaean basic and ultrabasic volcanics. Earth Planet Sci Lett 36:263–268. https://doi.org/10.1016/0012-821X(77)90208-4

    Article  ADS  CAS  Google Scholar 

  • Hamilton PJ, Evensen NM, O’Nions RK, Tarney J (1979) Sm—Nd systematics of Lewisian gneisses: implications for the origin of granulites. Nature 277:25–28. https://doi.org/10.1038/277025a0

    Article  ADS  CAS  Google Scholar 

  • Hannington MD (2021) VMS and SEDEX Deposits: 867-876

  • Hannington MD, Poulsen KH, Thompson JFH, Sillitoe RH (1997) Volcanogenic gold in the massive sulfide environment, volcanic associated massive sulfide deposits: processes and examples in modern and ancient settings. Soc Econ Geol, pp 0

  • Hannington MD, Bleeker W, Kjarsgaard I, Hannington MD, Barrie, CT (1999a) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit: part I. North, Central, and South Orebodies, The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists, pp 0

  • Hannington MD, Bleeker W, Kjarsgaard I, Barrie CT (1999b) Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit: part II The Bornite Zone, The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists, pp 0

  • Hannington MD, Barrie CT, Bleeker W (1999c) The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi Subprovince, Canada: summary and synthesis, The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Society of Economic Geologists, pp 0

  • Hannington MD, De Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. Econ Geol. https://doi.org/10.5382/av100.06

    Article  Google Scholar 

  • Hannington MD, Jamieson J, Monecke T, Petersen S, Beaulieu S (2011) The abundance of seafloor massive sulfide deposits. Geology 39:1155–1158. https://doi.org/10.1130/g32468.1

    Article  ADS  CAS  Google Scholar 

  • Hao TP (1993) Sm-Nd isotopic ages of Proterozoic metamorphic rocks from the middle sector of the Jinsha River. Geol Rev. 39:52–56 (in Chinese with English abstract)

    Google Scholar 

  • He YJ (1990) Metallogenic-geologic characteristics of Yushui Hydrothermal-sedimentary polymetallic deposit in Meixian county Guangdong Province. Guangdong Geology 3(1):1–13 (in Chinese with English abstract)

    Google Scholar 

  • Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol 155:115–130. https://doi.org/10.1016/S0009-2541(98)00144-2

    Article  ADS  CAS  Google Scholar 

  • Heinicke J, Italiano F, Maugeri R, Merkel B, Pohl T, Schipek M, Braun T (2009) Evidence of tectonic control on active arc volcanism: the Panarea-Stromboli tectonic link inferred by submarine hydrothermal vents monitoring (Aeolian arc, Italy). Geophys Res Lett 36. https://doi.org/10.1029/2008gl036664

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115. https://doi.org/10.1016/0169-1368(95)00009-7

    Article  Google Scholar 

  • Hou ZQ, Han F, Xia LQ, Zhang QL, Qu XM, Li ZQ, Bie FL, Wang LQ,Yu JJ, Tang SH (2003) Hydrothermal systems and metallogeny on the modern and ancient sea-floor. Geological Publishing House, Beijing, pp 1–386 (in Chinese)

  • Hu X, Huang Z, Wang J, Yu J, Xu K, Jansa L, Hu W (2012) Geology of the Fuding inlier in southeastern China: implication for late Paleozoic Cathaysian paleogeography. Gondwana Res 22:507–518. https://doi.org/10.1016/j.gr.2011.09.016

    Article  ADS  CAS  Google Scholar 

  • Hu L, Cawood PA, Du Y, Yang J, Jiao L (2015) Late Paleozoic to Early Mesozoic provenance record of Paleo-Pacific subduction beneath South China. Tectonics 34:986–1008. https://doi.org/10.1002/2014TC003803

    Article  ADS  Google Scholar 

  • Hu X, Chen H, Zhao L, Han J, Xia X (2017) Magnetite geochemistry of the Longqiao and Tieshan Fe–(Cu) deposits in the Middle-Lower Yangtze River Belt: implications for deposit type and ore genesis. Ore Geol Rev 89:822–835. https://doi.org/10.1016/j.oregeorev.2017.07.019

    Article  Google Scholar 

  • Huang Y (2015) Metallogenic Mechanism of the massive sulfide deposits formed in the fault depression zones on the continental crust-a case study of the Yushui Copper-Polymetallic deposit, Eastern Guangdong Province, China. Doctoral dissertation of Sun Yat-sen University. 1-192 (in Chinese)

  • Huang XW, Zhou MF, Qiu YZ, Qi L (2015a) In-situ LA-ICP-MS trace elemental analyses of magnetite: the Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol Rev 65:884–899. https://doi.org/10.1016/j.oregeorev.2014.09.010

    Article  Google Scholar 

  • Huang Y, Sun X, Shi G, Sa R, Guan Y, Jiang X, Que H (2015b) Re–Os dating of sulphides from the Yushui Cu-polymetallic deposit in eastern Guangdong Province, South China. Ore Geol Rev 70:281–289. https://doi.org/10.1016/j.oregeorev.2015.04.018

  • Huang XW, Boutroy É, Makvandi S, Beaudoin G, Corriveau L, De Toni AF (2019a) Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Miner Depos 54:525–552. https://doi.org/10.1007/s00126-018-0825-1

    Article  ADS  CAS  Google Scholar 

  • Huang Y, Wu Z, Sun X, Wang Y, Shi G, Zhai W, Guan Y (2019b) He-Ar isotopes and trace gas compositions of fluid inclusions in massive sulphides from the Yushui copper-polymetallic deposit. South China: Metallogenic implications. Minerals 9. https://doi.org/10.3390/min9050258

  • Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103:169–185. https://doi.org/10.1086/629734

    Article  ADS  CAS  Google Scholar 

  • Isozaki Y, Aoki K, Nakama T, Yanai S (2010) New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res 18:82–105. https://doi.org/10.1016/j.gr.2010.02.015

    Article  ADS  Google Scholar 

  • Jedwab J, Blanc G, Boulegue J (1989) Vanadiferous minerals from the Nereus Deep, Red Sea. Terra Nova 1:188–194. https://doi.org/10.1111/j.1365-3121.1989.tb00351.x

    Article  ADS  Google Scholar 

  • Jia L, Mao J, Liu P, Li Y (2018) Petrogenesis of the late Early Cretaceous granodiorite – quartz diorite from eastern Guangdong, SE China: implications for tectono–magmatic evolution and porphyry Cu–Au–Mo mineralization. Lithos 304–307:388–411. https://doi.org/10.1016/j.lithos.2018.02.008

    Article  ADS  CAS  Google Scholar 

  • Jiang SY, Han F, Shen JZ, Palmer MR (1999) Chemical and Rb–Sr, Sm–Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P.R China. Chem Geol 157:49–67. https://doi.org/10.1016/S0009-2541(98)00200-9

    Article  ADS  CAS  Google Scholar 

  • Jiang SY, Slack JF, Palmer MR (2000) Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit British Columbia. Geology 28:8. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Jiang SY, Sun Y, Sun MZ, Bian LZ, Xiong YG, Yang SY, Luo L, Cao ZQ, Wu YM (2010) Reiterative fault systems and superimposed mineralization in the Jiurui metallogenic cluster district, middle and lower Yangtze river mineralization belt China. Acta Petrologica Sinica 26(9):2751–2767 (in Chinese with English abstract)

    Google Scholar 

  • Jiang SY, Bian LZ, Ding QF, Yang SY, Zhu ZY, Sun MZ, Sun Y, Xiong YG (2011) Discovery and significance of carbonate mud mounds from Cu-polymetallic deposits in the Middle and Lower Yangtze River mineralization belt: examples from the Wushan and Dongguashan deposits. Acta Geologica Sinica 85(5):744–756 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P (2001) Sm–Nd and Sr isotope systematics of scheelite from the giant Au(–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Miner Depos 36:379–392. https://doi.org/10.1007/s001260100156

    Article  ADS  CAS  Google Scholar 

  • Kimberley MM (1989) Exhalative origins of iron formations. Ore Geol Rev 5:13–145. https://doi.org/10.1016/0169-1368(89)90003-6

    Article  Google Scholar 

  • Kong FB, Jiang SY, Xu YM, Zhu ZY, Qian HD, Bian LZ (2012) Submarine hydrothermal exhalation with superimposed magmatic-hydrothermal mineralization in the Wushan copper deposit, Jiangxi province: constraints from geological, ore texture and ore deposit geochemistry. Acta Petrologica Sinica 28(12):3929–3937 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li DF, Chen HY, Hollings P, Zhang L, Sun XM, Zheng Y, Xia XP, Xiao B, Wang CM, Fang J (2018) Trace element geochemistry of magnetite: implications for ore genesis of the Talate skarn Pb-Zn (-Fe) deposit, Altay, NW China. Ore Geol Rev 100:471–482. https://doi.org/10.1016/j.oregeorev.2017.03.015

    Article  Google Scholar 

  • Li SS, Chen HY, Peng YX, Wang LM, Luo ZR (2019) Tectonic evolution of the Yongmei depression constrained by zircon LA-ICP-MS U-Pb ages of granite porphyry and diabase from the Yushui Cu-Pb-Zn polymetallic deposit. Geochimica 48(4):313–324 (in Chinese with English abstract)

    Google Scholar 

  • Liu JQ (1997) Thermobarogeochemistry, ore-forming age and genesis study for the Yushui copper-rich multimetal deposit in Meixian county, Guangdong Province, Southern China. Geol Min Resour South China 1:37–50 (in Chinese with English abstract)

    Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  ADS  CAS  Google Scholar 

  • Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546. https://doi.org/10.1007/s11434-010-3052-4

    Article  CAS  Google Scholar 

  • Liu P, Mao J, Santosh M, Bao Z, Zeng X, Jia L (2018) Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie’shan W-Sn deposit in the eastern Guangdong Province, SE China: implications for W-Sn mineralization and geodynamic setting. Lithos 300–301:330–347. https://doi.org/10.1016/j.lithos.2017.12.015

    Article  ADS  CAS  Google Scholar 

  • Liu WG, Li ZD, Wei S, Chen J, Liu Y, Ao C, Xiao ZB, Zhou HY, Liu H (2019) Rapid separation and precise determination of strontium isotopic from geological samples with high rubidium/strontium ratios. Chin J Analytic Chem 47:1054–1060. https://doi.org/10.1016/s1872-2040(19)61172-2

    Article  CAS  Google Scholar 

  • Liu P, Gu X, Zhang W, Hu H, Chen X, Wang X, Song W, Yu M, Cook NJ (2023) Jingwenite-(Y) from the Yushui Cu deposit, South China: the first occurrence of a V-HREE-bearing silicate mineral. Am Min 108:192–196. https://doi.org/10.2138/am-2022-8373

    Article  ADS  Google Scholar 

  • Liu P, Gleeson SA, Cook NJ, Lehmann B, Zhao C, Yao W, Bao ZA, Wu ST, Tian YF, Mao JW (2023) Final assembly of Gondwana enhances crustal metal (HREE and U) endowment. Geochem Perspect Lett 26:7–13. https://doi.org/10.7185/geochemlet.2317

    Article  Google Scholar 

  • Ludwig KR (2003) User’s Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 4:25–32

    Google Scholar 

  • Lusty PAJ, Lacinska AM, Millar IL, Barrie CD, Boyce AJ (2017) Volcanological and environmental controls on the Snowdon mineralization, North Wales, UK: a failed volcanogenic massive sulfide system in the Avalon Zone of the British Caledonides. Ore Geol Rev 89:557–586. https://doi.org/10.1016/j.oregeorev.2017.06.031

    Article  Google Scholar 

  • Maas R, Apukhtina OB, Kamenetsky VS, Ehrig K, Sprung P, Münker C (2022) Carbonates at the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia part 2: Sm-Nd, Lu-Hf and Sr-Pb isotope constraints on the chronology of carbonate deposition. Ore Geol Rev 140:103745. https://doi.org/10.1016/j.oregeorev.2020.103745

    Article  Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408. https://doi.org/10.1016/j.oregeorev.2016.04.014

    Article  Google Scholar 

  • Marani MP, Gamberi F, Savelli C (1997) Shallow-water polymetallic sulfide deposits in the Aeolian island arc. Geology 25:9. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Marani M, Gamberi F, Bonatti E, De Alteris G, Magagnoli A, Monteduro R, Tonielli R, Scotto di Vetimo P (2002) ROV observations of the anomalous submarine gas venting occurring in the Lisca Bianca, Bottaro and Lisca Nera areas of the Panarea Island platform. http://www.bo.ismar.cnr.it/FS_ricerca.htm

  • Matthews A (1976) Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. American Mineralogist 61:927-932. http://www.minsocam.org/MSA/AmMin/TOC/

  • McKibben MA, Elders WA (1985) Fe-Zn-Cu-Pb mineralization in the Salton Sea geothermal system, Imperial Valley, California. Econ Geol 80:539–559. https://doi.org/10.2113/gsecongeo.80.3.539

    Article  CAS  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S, Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (2005) World skarn deposits. Society of Economic Geologists, One Hundredth Anniversary Volume

    Book  Google Scholar 

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and paleogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33. https://doi.org/10.1016/j.jseaes.2012.12.020

    Article  ADS  Google Scholar 

  • Monecke T, Petersen S, Hannington MD (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ Geol 109:2079–2101. https://doi.org/10.2113/econgeo.109.8.2079

    Article  Google Scholar 

  • Nie FJ, BjφRlykke A, Nilsen KS (1999) The origin of the Proterozoic Bidjovagge gold-copper deposit, Finnmark, Northern Norway, as deduced from rare earth element and Nd isotopic evidences on calcites. Resour Geol 49:13–25. https://doi.org/10.1111/j.1751-3928.1999.tb00028.x

    Article  CAS  Google Scholar 

  • No. 723 Team of Guangdong Bureau of Geology and Mineral Resource (BGMR)(1988) Geological report of Yushui copper polymetallic mining area in Meixian County, internal data: Guangdong Province, 1-298 (in Chinese)

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177. https://doi.org/10.1016/0169-1368(95)00021-6

    Article  Google Scholar 

  • Ohmoto H (2003) Nonredox transformations of magnetite-hematite in hydrothermal systems. Econ Geol 98:157–161. https://doi.org/10.2113/gsecongeo.98.1.157

    Article  CAS  Google Scholar 

  • Olafsson J, Honjo S, Thors K, Stefansson U, Jones R, Ballard RD (1989) Initial observation, bathymetry and photography of a geothermal site on the Kolbeinsey Ridge. Oceanography 1988:121–127

  • Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2010) Mechanisms of iron oxide transformations in hydrothermal systems. Geochimica et Cosmochimica Acta 74:6141–6156. https://doi.org/10.1016/j.gca.2010.07.024

    Article  ADS  CAS  Google Scholar 

  • Palmer MR, Edmond JM (1989) The strontium isotope budget of the modern ocean. Earth Planet Sci Lett 92:11–26. https://doi.org/10.1016/0012-821X(89)90017-4

    Article  ADS  CAS  Google Scholar 

  • Peng JT, Hu RZ, Burnard PG (2003) Samarium–neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer. Chem Geol 200:129–136. https://doi.org/10.1016/S0009-2541(03)00187-6

    Article  ADS  CAS  Google Scholar 

  • Peng HJ, Hou L, Sun C, Zou H, Wang TR, Ma Z-Z (2021) Geochemistry of magnetite from the Hongniu-Hongshan Cu skarn deposit in Yunnan Province SW China. Ore Geol Rev 136:104237. https://doi.org/10.1016/j.oregeorev.2021.104237

    Article  Google Scholar 

  • Peter JMJG (2003) Ancient iron formations: their genesis and use in the exploration for stratiform base metal sulfide deposits, with examples from the Bathurst Mining Camp. 4,145-176

  • Petersen S, Krätschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed – geological characteristics and resource potential of deep-sea mineral resources. Marine Policy 70:175–187. https://doi.org/10.1016/j.marpol.2016.03.012

    Article  Google Scholar 

  • Pirajno F, Cawood PA (2009) Hydrothermal processes and mineral systems. Springer

    Book  Google Scholar 

  • Pirajno F, Chen Y, Li N, Li C, Zhou L (2016) Besshi-type mineral systems in the Palaeoproterozoic Bryah rift-basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution. Geosci Front 7:345–357. https://doi.org/10.1016/j.gsf.2015.09.003

    Article  CAS  Google Scholar 

  • Ren JS (1990) On the geotectonics of southern China. Acta Geologica Sinica 4:275–288 (in Chinese with English abstract)

    Google Scholar 

  • Ridler R (1971) Analysis of Archean volcanic basins in Canadian Shield using exhalite concept, Canadian Mining And Metallurgical Bulletin, Canadian Inst Mining Metallurgy Petroleum 101 6th Ave Sw, Ste 320, Calgary, pp 20

  • Sánchez V, Cardellach E, Corbella M, Vindel E, Martín-Crespo T, Boyce AJ (2010) Variability in fluid sources in the fluorite deposits from Asturias (N Spain): further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geol Rev 37:87–100. https://doi.org/10.1016/j.oregeorev.2009.12.001

    Article  Google Scholar 

  • Sangster DF (1980) Quantitative characteristics of volcanogenic massive sulfide deposits: Bulletin of Canada Institute Mineral Metallurgy 73:74–81

    CAS  Google Scholar 

  • Sappin AA, Dupuis C, Beaudoin G, Pozza M, McMartin I, McClenaghan MB (2014) Optimal ferromagnetic fraction in till samples along ice-flow paths: case studies from the Sue-Dianne and Thompson deposits, Canada. Geochemistry: Exploration. Environment, Analysis 14:315–329. https://doi.org/10.1144/geochem2013-212

    Article  CAS  Google Scholar 

  • Savelli C, Marani M, Gamberi F (1999) Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea). J Volcanol Geotherm Res 88:305–323. https://doi.org/10.1016/S0377-0273(99)00007-4

    Article  ADS  CAS  Google Scholar 

  • Schaarschmidt A, Haase KM, Klemd R, Keith M, Voudouris PC, Alfieris D, Strauss H, Wiedenbeck M (2021) Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow-marine hydrothermal systems: evidence from Milos Island Greece. Chem Geol 583:120457. https://doi.org/10.1016/j.chemgeo.2021.120457

    Article  CAS  Google Scholar 

  • Schulz K (2010) Regional environment in volcanogenic massive sulfide occurrence model. Geological Survey Scientific Investigations Report 2010–5070 –C, chap. 4. p 24

  • Shanks W (2012) Hydrothermal alteration in volcanogenic massive sulfide occurrence model. US Geol Surv Sci Investig Rep 2010-5070-C:165–180

  • Shanks IW, Callender E (1992) Thermal springs in Lake Baikal. Geology 20:495. https://doi.org/10.1130/0091-7613

    Article  ADS  Google Scholar 

  • Shen L, Yu JH, O’Reilly SY, Griffin WL (2018) Tectonic switching of Southeast China in the Late Paleozoic. J Geophys Res Solid Earth 123:8508–8526. https://doi.org/10.1029/2018jb015520

    Article  ADS  CAS  Google Scholar 

  • Slack JFJD, Rocks GMfC-C-GDiM (2012) 3. Historical evolution of descriptive and genetic knowledge and concepts in volcanogenic massive sulfide occurrence model: U.S. Geological Survey Scientific Investigations Report 2010–5070 –C, chap. 3, pp 6

  • Spry PG, Peter JM (2000) Meta-exhalites as exploration guides to ore. 11:163–201

    Google Scholar 

  • Su W, Hu R, Xia B, Xia Y, Liu Y (2009) Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chem Geol 258:269–274. https://doi.org/10.1016/j.chemgeo.2008.10.030

    Article  ADS  CAS  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281. https://doi.org/10.1016/S0009-2541(00)00198-4

    Article  ADS  Google Scholar 

  • Tiercelin JJ, Pflumio C, Castrec M, Boulégue J, Gente P, Rolet J, Coussement C, Stetter KO, Huber R, Buku S, Mifundu W (1993) Hydrothermal vents in Lake Tanganyika, East African Rift system. Geology 21:499. https://doi.org/10.1130/0091-7613(1993)021%3c0499:hvilte%3e2.3.co;2

    Article  ADS  CAS  Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307. https://doi.org/10.1016/j.oregeorev.2004.12.005

    Article  Google Scholar 

  • Tornos F, Spiro B (1997) The carbonate-rich hydrothermal alteration related to the massive sulfides in the Iberian Pyrite Belt. Abstract Volume, Society of Economic Geologists Field Conference, 82

  • Tornos F, Spiro B, Stanley Cjmdptpr, Balkema (1999) The genesis of shale-hosted massive sulfides in the Iberian Pyrite Belt. 605-608

  • Veizer J (1989) Strontium isotopes in seawater through time. Annual Rev Earth Planet Sci 17:141–167. https://doi.org/10.1146/annurev.ea.17.050189.001041

    Article  ADS  CAS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88. https://doi.org/10.1016/S0009-2541(99)00081-9

    Article  ADS  CAS  Google Scholar 

  • Verdugo-Ihl MR, Ciobanu CL, Courtney-Davies L, Cook NJ, Slattery A, Ehrig K, Tornos F, Hanchar JM (2022) U-Pb geochronology and mineralogy of hematite from Mantoverde and Carmen de Cobre, Northern Chile: constraints on Andean IOCG mineralization. Econ Geol 117:943–960. https://doi.org/10.5382/econgeo.4903

    Article  Google Scholar 

  • Wang SX (2005) On spatial distribution and signification of Carboniferous marine volcanic rocks in the Southwest Fujian depression. Geol Fujian 22(04):217–220 (in Chinese with English abstract)

    Google Scholar 

  • Wang Y, Jin Y (2000) Permian paleogeographic evolution of the Jiangnan Basin, South China. Palaeogeogr Palaeoclimatol Palaeoecol 160:35–44. https://doi.org/10.1016/S0031-0182(00)00043-2

    Article  Google Scholar 

  • Wang LM, Yang M, Peng SL (1999) On the genesis of the Yushui polymetallic deposit in Meixian county Guangdong Province. Geotectonica et Metallogenia 23(4):345–352 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Wang S, Zhang D, Wu G, Vatuva A, Di Y, Yan P, Feng H, Ma S (2017) Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes. Geosci Front 8:529–540. https://doi.org/10.1016/j.gsf.2016.05.005

    Article  CAS  Google Scholar 

  • Wang YJ, Zhu WG, Huang HQ, Bai ZJ, Zhong H, Yao JH, Fan HP (2020) Geochemistry of magnetite from the giant Paleoproterozoic Dahongshan Fe-Cu deposit, SW China: constraints on nature of ore-forming fluids and depositional setting. Ore Geol Rev 118:103361. https://doi.org/10.1016/j.oregeorev.2020.103361

    Article  Google Scholar 

  • Wen G, Li JW, Hofstra AH, Koenig AE, Lowers HA, Adams D (2017) Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: insights from the Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta 213:255–270. https://doi.org/10.1016/j.gca.2017.06.043

    Article  ADS  CAS  Google Scholar 

  • Wilson Marjorie (1989) Mid-ocean ridges In: Wilson M (ed) Igneous Petrogenesis. Springer Netherlands, Dordrecht, pp 101-150. https://doi.org/10.1007/978-1-4020-6788-4_5

  • Wilson IF, Rocha VS (1955) Geology and mineral deposits of the Boleo copper district, Baja California, Mexico. US Government Printing Office

  • Xie HG, Wang WB, Li WD (1995) The genesis and metallogenetic epoch of Xinqiao Cu-S deposit Anhui. Volcanol Miner Resour 16(2):101–107 (in Chinese with English abstract)

    Google Scholar 

  • Xing B, Mao J, Xiao X, Liu H, Yu L, Li H, Guo S, Li H, Huang W (2022) Genesis of the Dingjiashan and Fengyan Zn-Pb polymetallic deposits in central Fujian, SE China: evidence from magnetite geochemistry. Ore Geol Rev 144:104851. https://doi.org/10.1016/j.oregeorev.2022.104851

    Article  Google Scholar 

  • Xun Z, Allen MB, Whitham AG, Price SP (1996) Rift-related Devonian sedimentation and basin development in South China. J Southeast Asian Earth Sci 14:37–52. https://doi.org/10.1016/s0743-9547(96)00020-7

    Article  ADS  Google Scholar 

  • Yi JJ (2018) Study on the genetic mechanism and prospecting model of Makeng iron deposit in Southwest Fujian. China University of Geosciences (Beijing)

  • Zhang CS (2012) Geology and geochemistry of Makeng Fe-Mo deposit, Fujian. Doctoral dissertation of China University of Geosciences. 1-199(in Chinese with English abstract)

  • Zhao WW, Zhou MF (2015) In-situ LA–ICP-MS trace elemental analyses of magnetite: the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China. Ore Geol Rev 65:872–883. https://doi.org/10.1016/j.oregeorev.2014.09.019

    Article  Google Scholar 

  • Zhao X, Allen MB, Whitham AG, Price SP (1996) Rift-related Devonian sedimentation and basin development in South China. J Southeast Asian Earth Sci 14:37–52. https://doi.org/10.1016/s0743-9547(96)00020-7

    Article  ADS  Google Scholar 

  • Zhao JH, Zhou MF, Zheng JP (2010) Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China. Lithos 115:177–189. https://doi.org/10.1016/j.lithos.2009.12.001

    Article  ADS  CAS  Google Scholar 

  • Zhou H, Sun X, Wu Z, Liao J, Fu Y, Li D, Hollings P, Liu Y, Lin H, Lin Z (2017) Hematite U-Pb geochronometer: insights from monazite and hematite integrated chronology of the Yaoan gold deposit, Southwest China. Econ Geol 112:2023–2039. https://doi.org/10.5382/econgeo.2017.4539

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annual Rev Earth Planet Sci 14:493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Editors-in-Chief Bernd Lehmann, associate editor Shao-Yong Jiang, and one reviewer are thanked for the constructive reviews that greatly improved the quality of this paper. We thank Dr. Yongfei Tian, Kezhong Ma and local geological Mr. Wei Zhang and Yongxin Peng for helping with the field investigation. Our thanks also go to Profs. Jingwen Mao, Bernd Lehmann, Larry Meinert, and Richard Goldfarb for their guidance and comments during the field trips to the Yushui copper deposit. We are grateful to Profs. Zhenyu Chen, Zhihui Dai, and Wengang Liu for helping with the data collection; to Profs. Tornos Fernando, Fuquan Yang, and Dr. Wenhao Tang for their suggestions on the manuscript draft; and to Dr. Junzeng Zuo, Zhiqiang Zhang and Sean McClenaghan for polishing up the language of this manuscript.

Funding

This research was funded by the National Natural Sciences Foundation of China (42072110) and the China Geological Survey mineral survey project (DD20201173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: S.-Y. Jiang

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Yang, X., Ke, C. et al. The shallow marine VMS copper deposit of Yushui, Eastern Guangdong, South China: evidence from geology, geochronology, and geochemistry. Miner Deposita 59, 815–835 (2024). https://doi.org/10.1007/s00126-023-01232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01232-5

Keywords

Navigation