Skip to main content

Advertisement

Log in

Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Trace element compositions of magnetite and hematite from 16 well-studied iron oxide–copper–gold (IOCG) and iron oxide apatite (IOA) deposits, combined with partial least squares-discriminant analysis (PLS-DA), were used to investigate the factors controlling the iron oxide chemistry and the links between the chemical composition of iron oxides and hydrothermal processes, as divided by alteration types and IOCG and IOA deposit subtypes. Chemical compositions of iron oxides are controlled by oxygen fugacity, temperature, co-precipitating sulfides, and host rocks. Iron oxides from hematite IOCG deposits show relatively high Nb, Cu, Mo, W, and Sn contents, and can be discriminated from those from magnetite + hematite and magnetite IOA deposits. Magnetite IOCG deposits show a compositional diversity and overlap with the three other types, which may be due to the incremental development of high-temperature Ca–Fe and K–Fe alteration. Iron oxides from the high-temperature Ca–Fe alteration can be discriminated from those from high- and low-temperature K–Fe alteration by higher Mg and V contents. Iron oxides from low-temperature K–Fe alteration can be discriminated from those from high-temperature K–Fe alteration by higher Si, Ca, Zr, W, Nb, and Mo contents. Iron oxides from IOA deposits can be discriminated from those from IOCG deposits by higher Mg, Ti, V, Pb, and Sc contents. The composition of IOCG and IOA iron oxides can be discriminated from those from porphyry Cu, Ni–Cu, and volcanogenic massive sulfide deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acosta-Góngora P, Gleeson S, Samson I, Ootes L, Corriveau L (2014) Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-UW mineralization in the Great Bear magmatic zone, NWT, Canada. Econ Geol 109:1901–1928

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall Ltd., London, UK, pp 1–416

    Google Scholar 

  • Angerer T, Hagemann SG, Danyushevsky LV (2012) Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia. Econ Geol 107:599–644

    Google Scholar 

  • Apukhtina OB, Kamenetsky VS, Ehrig K, Kamenetsky MB, Maas R, Thompson J, McPhie J, Ciobanu CL, Cook NJ (2017) Early, deep magnetite–fluorapatite mineralization at the Olympic dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 112:1531–1542

    Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Google Scholar 

  • Barreira CF, Soares ADV, Ronzê PC (1999) Descoberta do depósito Cu–Au Alemão—Província Mineral de Carajás (PA). In: SBG, 6° Simpósio de Geologia da Amazônia, Manaus, AM, vol 6. Bol Res Expandidos, pp 136–139

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Google Scholar 

  • Bastrakov EN, Skirrow RG, Davidson GJ (2007) Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler craton, South Australia. Econ Geol 102:1415–1440

    Google Scholar 

  • Beaudoin G, Dupuis C (2010) Iron-oxide trace element fingerprinting of mineral deposit types. In: Corriveau L, Mumin AH (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 107–121

    Google Scholar 

  • Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72:1101–1130

    Google Scholar 

  • Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide and its application to mineral exploration. J Geochem Explor 145:64–81

    Google Scholar 

  • Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28:213–225

    Google Scholar 

  • Broughm SG, Hanchar JM, Tornos F, Westhues A, Attersley S (2017) Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile. Miner Deposita 52:1223–1244

    Google Scholar 

  • Buddington A, Lindsley D (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Carew MJ (2004) Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, NW Queensland, Australia. Ph.D. thesis, James Cook University, Queensland, pp 213–277

  • Carlon CJ (2000) Iron oxide systems and base metal mineralisation in northern Sweden. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 283–296

    Google Scholar 

  • Chen WT, Zhou M-F, Gao J-F, Hu RZ (2015) Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Miner Deposita 50:795–809

    Google Scholar 

  • Clark T, Gobeil A, Chevé S (2010) Alterations in IOCG-type and related deposits in the Manitou Lake area, eastern Grenville Province, Québec. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 127–146

    Google Scholar 

  • Clark T, Gobeil A, David J (2005) Iron oxide-copper-gold-type and related deposits in the Manitou Lake area, eastern Grenville Province, Quebec: variations in setting, composition, and style. Can J Earth Sci 42:1829–1847

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, Weinheim, pp 1–694

    Google Scholar 

  • Corriveau L, Ootes L, Mumin H, Jackson V, Bennett V, Cremer JF, Rivard B, McMartin I, Beaudoin G (2007) Alteration vectoring to IOCG(U) deposits in frontier volcano-plutonic terrains, Canada. In: Milkereit B (ed) Proceedings of exploration 07: fifth decennial international conference on mineral exploration, pp 1171–1177

    Google Scholar 

  • Corriveau L, Williams PJ, Mumin AH (2010) Alteration vectors to IOCG mineralization—from uncharted terranes to deposits. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 89–110

    Google Scholar 

  • Corriveau L, Montreuil J-F, Potter E (2016) Alteration facies linkages among iron oxide copper–gold, iron oxide–apatite, and affiliated deposits in the Great Bear magmatic zone, northwest territories, Canada. Econ Geol 111:2045–2072

    Google Scholar 

  • Corriveau L, Potter EG, Acosta-Gongora P, Blein O, Montreuil J-F, De Toni AF, Day W, Slack JF, Ayuso RA, Hanes R (2017) Petrological mapping and chemical discrimination of alteration facies as vectors to IOA, IOCG, and affiliated deposits within Laurentia and beyond. Proceedings of the 14th SGA Biennial Meeting, 20–23 August 2017, Québec City, pp 851–855

  • Cygan GL, Candela PA (1995) Preliminary study of gold partitioning among pyrrhotite, pyrite, magnetite, and chalcopyrite in gold-saturated chloride solutions at 600 to 700°C, 140 MPa, 1400 bars. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, vol 23. Mineralogical Association of Canada Short Course, pp 129–137

  • Dare SAS, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Google Scholar 

  • Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Deposita 49:785–796

    Google Scholar 

  • Day WC, Slack JF, Ayuso RA, Seeger CM (2016) Regional geologic and petrologic framework for iron oxide ± apatite ± rare earth element and iron oxide copper–gold deposits of the Mesoproterozoic St. Francois mountains terrane, Southeast Missouri, USA. Econ Geol 111:1825–1858

    Google Scholar 

  • Deditius AP, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Rubanov S, Dodd A, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173:46

    Google Scholar 

  • De Iorio M, Ebbels TMD, Stephens DA (2008) Statistical techniques in metabolic profiling. In: Handbook of statistical genetics. John Wiley & Sons, Ltd, pp 347–373

  • De Toni AF (2016) Les paragenèses à magnétite des altérations associées aux systèmes à oxydes de fer et altérations en éléments alcalins, zone magmatique du Grand lac de l'Ours. MSc thesis, Université du Québec, Institut National de la Recherche Scientifique-Centre Eau Terre Environnement, pp 1–549

  • Dreher AM, Xavier RP, Taylor BE, Martini SL (2008) New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu–Au deposit, Carajás Province, Brazil. Miner Deposita 43:161–184

    Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46:1–17

    Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300

    Google Scholar 

  • Ehrig K, Kamenetsky VS, McPhie J, Apukhtina O, Ciabanu CL, Cook N, Kontonikas-Charos A, Krneta S (2017) The IOCG-IOA Olympic Dam Cu-U-Au-Ag deposit and nearby prospects, South Australia. Proceedings of the 14th SGA Biennial Meeting, 20–23 August 2017, Québec City, pp 823–827

  • Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu–U–Au–Ag deposit, South Australia. In: Hedenquist JW, Harris M, Camus F (eds) Geology and genesis of major copper deposits of the world. Society of Economic Geologists, special publication 16, Littleton, pp 237–267

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391

    Google Scholar 

  • Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C (2013) Multi- and megavariate data analysis: basic principles and applications. MKS Umetrics AB, Sweden, pp 1–521

    Google Scholar 

  • Fleet ME (1981) The structure of magnetite. Acta Cryst B 37:917–920

    Google Scholar 

  • Fleet ME, Crocket JH, Stone WE (1996) Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim Cosmochim Acta 60:2397–2412

    Google Scholar 

  • Frietsch R, Perdahl J-A (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Google Scholar 

  • Frost BR (1991) Stability of oxide minerals in metamorphic rocks. Rev Mineral Geochem 25:469–488

    Google Scholar 

  • Frost BR, Lindsley DH (1991) Occurrence of iron-titanium oxides in igneous rocks. Rev Mineral Geochem 25:433–468

    Google Scholar 

  • Gauthier M, Chartrand F, Cayer A, David J (2004) The Kwyjibo Cu-REE-U-Au-Mo-F property, Quebec: a mesoproterozoic polymetallic iron oxide deposit in the northeastern Grenville Province. Econ Geol 99:1177–1196

    Google Scholar 

  • Geijer P (1910) Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuolluvaara. Scientific and practical researches in Lapland arranged by Luossavaara-Kiirunavaara Aktiebolag. PhD thesis, University Uppsala, Uppsala, Sweden, pp 1–278

  • Ghiorso MS, Sack O (1991) Fe–Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Mineral Petrol 108:485–510

    Google Scholar 

  • Goldschmidt VM (1958) Geochemistry. Oxford University Press, London, pp 1–730

    Google Scholar 

  • Green GR (2012) Ore deposits and metallogenesis of Tasmania. Episodes 35:205–215

    Google Scholar 

  • Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sediment Res 60:940–951

    Google Scholar 

  • Heidarian H, Lentz D, Alirezaei S, Peighambari S, Hall D (2016) Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite–apatite deposit, Bafq district, Central Iran. Mineral Petrol 110:927–942

    Google Scholar 

  • Helsel DR (2005) Nondetects and data analysis. Statistics for censored environmental data. Wiley-Interscience, New York, pp 1–268

    Google Scholar 

  • Henríquez F, Naslund HR, Nyström JO, Vivallo W, Aguirre R, Dobbs FM, Lledó H (2003) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile—a discussion. Econ Geol 98:1497–1500

    Google Scholar 

  • Henríquez F, Nyström JO (1998) Magnetite bombs at El Laco volcano, Chile. GFF 120:269–271

    Google Scholar 

  • Hitzman MW (2000) Iron oxide-Cu-Au deposits: what, where, when, and why. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 9–25

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu ± U ± Au ± REE) deposits. Precambrian Res 58:241–287

    Google Scholar 

  • Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Comput Stat Data Anal 54:3095–3107

    Google Scholar 

  • Hu H, Lentz D, Li J-W, McCarron T, Zhao X-F, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8

    Google Scholar 

  • Huang X-W, Zhou M-F, Qi L, Gao J-F, Wang Y-W (2013) Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic–hydrothermal Fe deposit, NW China. Miner Deposita 48:925–946

    Google Scholar 

  • Huang X-W, Qi L, Meng Y-M (2014) Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, eastern Tianshan Orogenic Belt, NW China. Acta Geol Sin 88:176–195

    Google Scholar 

  • Huang X-W, Gao J-F, Qi L, Zhou M-F (2015a) In-situ LA-ICP-MS trace elemental analyses of magnetite and Re–Os dating of pyrite: the Tianhu hydrothermally remobilized sedimentary Fe deposit. NW China Ore Geol Rev 65:900–916

    Google Scholar 

  • Huang X-W, Zhou M-F, Qiu Y-Z, Qi L (2015b) In-situ LA-ICP-MS trace elemental analyses of magnetite: the Bayan Obo Fe–REE–Nb deposit. North China Ore Geol Rev 65:884–899

    Google Scholar 

  • Huang X-W, Gao J-F, Qi L, Meng Y-M, Wang Y-C, Dai Z-H (2016) In-situ LA-ICP-MS trace elements analysis of magnetite: the Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China. Ore Geol Rev 72:746–759

    Google Scholar 

  • Huang X-W, Zhou M-F, Beaudoin G, Gao J-F, Qi L, Lyu C (2018) Origin of the volcanic-hosted Yamansu Fe deposit, eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Miner Deposita. https://doi.org/10.1007/s00126-018-0794-4

  • Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge member of the Brockman Iron Formation, Hamersley group, Western Australia. Am Mineral 97:26–37

    Google Scholar 

  • Ilton ES, Eugster HP (1989) Base metal exchange between magnetite and a chloride-rich hydrothermal fluid. Geochim Cosmochim Acta 53:291–301

    Google Scholar 

  • Jarosewich E, Nelen J, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wӓlle M, Heinrich CA, Holtz F, Munizaga R (2015b) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ, Ehrig K, Krneta S, Kamenetsky VS (2017) Feldspar evolution in the Roxby Downs granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geol Rev 80:838–859

    Google Scholar 

  • Lee L, Helsel D (2007) Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing. Comput Geosci 33:696–704

    Google Scholar 

  • Lindenmayer ZG, Teixeira JBG (1999) Ore genesis at the Salobo copper deposit, Serra dos Carajás. In: Silva MG, Misi A (eds) Base metal deposits of Brazil. MME/CPRM/DNPM, pp 33–43

    Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble IIID (ed) Oxide Minerals. Rev Mineral, pp L1–L60

    Google Scholar 

  • Liu P-P, Zhou M-F, Chen WT, Gao J-F, Huang X-W (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe–Ti–(V) oxide-bearing mafic–ultramafic layered intrusions of the Emeishan Large Igneous Province. SW China Ore Geol Rev 65:853–871

    Google Scholar 

  • Loberg BEH, Horndahl AK (1983) Ferride geochemistry of Swedish Precambrian iron ores. Miner Deposita 18:487–504

    Google Scholar 

  • Makvandi S, Beaudoin G, McClenaghan BM, Layton-Matthews D (2015) The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: application to mineral exploration. J Geochem Explor 150:84–103

    Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C (2016a) Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geol Rev 72:60–85

    Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky EC, McClenaghan MB, Duchesne C, Boutroy E (2016b) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408

    Google Scholar 

  • Mark G, Oliver NH, Williams PJ (2006) Mineralogical and chemical evolution of the Ernest Henry Fe oxide–Cu–Au ore system, Cloncurry district, Northwest Queensland, Australia. Miner Deposita 40:769–801

    Google Scholar 

  • Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile. Econ Geol 96:1799–1826

    Google Scholar 

  • Marschik R, Chiaradia M, Fontboté L (2003) Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district, Chile. Mineral Deposita 38:900–912

    Google Scholar 

  • Martinsson O, Billström K, Broman C, Weihed P, Wanhainen C (2016) Metallogeny of the northern Norrbotten Ore Province, northern Fennoscandian shield with emphasis on IOCG and apatite-iron ore deposits. Ore Geol Rev 78:447–492

    Google Scholar 

  • Matthews A (1976) Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. Am Mineral 6:927–932

    Google Scholar 

  • McLelland J, Morrison J, Selleck B, Cunningham B, Olson C, Schmidt K (2002) Hydrothermal alteration of late- to post-tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: origin of quartz–sillimanite segregations, quartz–albite lithologies, and associated Kiruna-type low-Ti Fe-oxide deposits. J Metamorph Geol 20:175–190

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists. Littleton, Colorado, pp 299–336

    Google Scholar 

  • Monteiro LVS, Xavier RP, De Carvalho ER, Hitzman MW, Johnson CA, De Souza Filho CR, Torresi I (2008a) Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints. Miner Deposita 43:129–159

    Google Scholar 

  • Monteiro LVS, Xavier RP, Hitzman MW, Juliani C, De Souza Filho CR, Carvalho ER (2008b) Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil. Ore Geol Rev 34:317–336

    Google Scholar 

  • Montreuil JF, Corriveau L, Grunsky EC (2013) Compositional data analysis of hydrothermal alteration in IOCG systems, Great Bear magmatic zone, Canada: to each alteration type its own geochemical signature. Geochem Explor Environ Anal 13:229–247

    Google Scholar 

  • Montreuil J-F, Corriveau L, Potter E, De Toni A (2016) On the relationship between alteration facies and metal endowment of iron oxide-alkali-altered systems, southern Great Bear magmatic zone (Canada). Econ Geol 111:2139–2168

    Google Scholar 

  • Müller B, Axelsson MD, Öhlander B (2003) Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF 125:1–5

    Google Scholar 

  • Mumin AH, Somarin AK, Jones B, Corriveau L, Ootes L, Camier J (2010) The IOCG-porphyry-epithermal continuum in the Great Bear magmatic zone, northwest territories, Canada. In: Corriveau L, Mumin AH (eds) Exploring for iron-oxide copper-gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 59–78

    Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Google Scholar 

  • Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292

    Google Scholar 

  • Nadoll P, Mauk JL, Leveille RA, Koenig AE (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner Deposita 50:493–515

    Google Scholar 

  • Naslund HR, Henríquez F, Nyström JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralization: examples from the Chilean high Andes and coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 207–226

    Google Scholar 

  • Nold JL, Davidson P, Dudley MA (2013) The pilot knob magnetite deposit in the Proterozoic St. Francois mountains terrane, Southeast Missouri, USA: a magmatic and hydrothermal replacement iron deposit. Ore Geol Rev 53:446–469

    Google Scholar 

  • Nuelle LM, Day WC, Sidder GB, Seeger CM (1992) Geology and mineral paragenesis of the Pea Ridge iron ore mine, Washington County, Missouri—origin of the rare-earth-element- and gold-bearing breccia pipes (United States Geological Survey Bulletin 1989). In: Day WC, Lane DE (eds) Strategic and critical minerals in the midcontinent region, United States, Chapter A. United States Government Printing Office, Washington, pp A1–A11

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Google Scholar 

  • Ohmoto H (2003) Nonredox transformations of magnetite–hematite in hydrothermal systems. Econ Geol 98:157–161

    Google Scholar 

  • Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2010) Mechanisms of iron oxide transformations in hydrothermal systems. Geochim Cosmochim Acta 74:6141–6156

    Google Scholar 

  • Putnis A, Austrheim H (2013) Mechanisms of metasomatism and metamorphism on the local mineral scale: the role of dissolution–reprecipitation during mineral re-equilibration. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer-Verlag, Berlin-Heidelberg, pp 141–170

    Google Scholar 

  • Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon, New York, pp 1–1207

    Google Scholar 

  • Razjigaeva N, Naumova V (1992) Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study. J Sediment Res 62:802–809

    Google Scholar 

  • Reich M, Simon AC, Deditius A, Barra F, Chryssoulis S, Lagas G, Tardani D, Knipping J, Bilenker L, Sánchez-Alfaro P (2016) Trace element signature of pyrite from the Los Colorados iron oxide–apatite (IOA) deposit, Chile: a missing link between Andean IOA and iron oxide copper–gold systems? Econ Geol 111:743–761

    Google Scholar 

  • Requia K, Fontboté L (2000) The Salobo iron oxide copper–gold deposit, Carajás, northern Brazil. In: Porter TM (ed) Hydrothermal iron-oxide copper–gold and related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 225–236

    Google Scholar 

  • Requia K, Stein H, Fontboté L, Chiaradia M (2003) Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil. Miner Deposita 38:727–738

    Google Scholar 

  • Rhodes AL, Oreskes N, Sheets SA (1999) Geology and rare earth element (REE) geochemistry of magnetite deposits at El Laco, Chile. In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Publ, vol 7, pp 299–332

    Google Scholar 

  • Righter K, Sutton SR, Newville M, Le L, Schwandt CS, Uchida H, Lavina B, Downs RT (2006) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. Am Mineral 91:1643–1656

    Google Scholar 

  • Ronzê PC, Soares ADV, dos Santos MGS, Barreira CF (2000) Alemão copper–gold (U-REE) deposit, Carajás, Brazil. In: Poter TM (ed) Hydrothermal iron oxide copper–gold & related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 191–202

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. The crust. Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Rusk B, Oliver N, Cleverley J, Blenkinsop T, Zhang D, Williams P, Habermann P (2010) Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOCG genesis. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 3. PGC Publishing, Adelaide, pp 1–18

    Google Scholar 

  • Rusk BG, Oliver NHS, Zhang D, Brown A, Lilly R, Jungmann D (2009) Compositions of magnetite and sulfides from barren and mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier, Australia. In: Proceedings of GSA Annual Meeting, 18–21 October 2009, Portland. Geol Soc Am Abstr Programs 41:84

    Google Scholar 

  • Sappin A-A, Dupuis C, Beaudoin G, Pozza M, McMartin I, McClenaghan M (2014) Optimal ferromagnetic fraction in till samples along ice-flow paths: case studies from the Sue-Dianne and Thompson deposits, Canada. Geochem Explor Environ Anal 14:315–329

    Google Scholar 

  • Savard D, Barnes SJ, Dare S, Beaudoin G (2012) Improved calibration technique for magnetite analysis by LA-ICP-MS. Mineral Mag 76:2329

    Google Scholar 

  • Sidhu PS, Gilkes RJ, Posner AM (1981) Oxidation and ejection of nickel and zinc from natural and synthetic magnetites. Soil Sci Soc Am J 45:641–644

    Google Scholar 

  • Sievwright RH, Wilkinson JJ, O’Neill HSC, Berry AJ (2017) Thermodynamic controls on element partitioning between titanomagnetite and andesitic–dacitic silicate melts. Contrib Mineral Petrol 172:62

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Deposita 38:787–812

    Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Simon AC, Candela PA, Piccoli PM, Mengason M, Englander L (2008) The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. Am Mineral 93:1437–1448

    Google Scholar 

  • Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. In: SEG Keystone Conference, Denver, USA, 2006. CD-ROM

  • Skirrow R (2010) "Hematite-group" IOCG ± U ore systems: tectonic settings, hydrothermal characteristics, and Cu-Au and U mineralizing processes. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 39–58

    Google Scholar 

  • Sossi PA, Prytulak J, O’Neill HSC (2018) Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800°C and 0.5 GPa. Contrib Mineral Petrol 173:27

    Google Scholar 

  • Swann P, Tighe N (1977) High voltage microscopy of the reduction of hematite to magnetite. Metall Trans B 8:479–487

    Google Scholar 

  • Tallarico FH, Figueiredo BR, Groves DI, Kositcin N, McNaughton NJ, Fletcher IR, Rego JL (2005) Geology and SHRIMP U–Pb geochronology of the Igarapé Bahia deposit, Carajás copper–gold belt, Brazil: an archean (2.57 Ga) example of iron-oxide Cu-Au-(U-REE) mineralization. Econ Geol 100:7–28

    Google Scholar 

  • Tazava E, De Oliveira CG (2000) The Igarapé Bahia Au-Cu-(REE-U) deposit, Carajás Mineral Province, northern Brazil. In: Poter TM (ed) Hydrothermal iron oxide copper–gold & related deposits: a global perspective, vol 1. PGC Publishing, Adelaide, pp 203–212

  • Thió-Henestrosa S, Martín-Fernández J (2005) Dealing with compositional data: the freeware CoDaPack. Math Geol 37:773–793

    Google Scholar 

  • Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Google Scholar 

  • Tornos F (2011) Magnetite–apatite and IOCG deposits formed by magmatic–hydrothermal evolution of complex calcalkaline melts. In: Proceedings of 11th biennial SGA meeting, 26–29 September 2011, Antofagasta, Chile, pp 443–445

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430

    Google Scholar 

  • Torresi I, Xavier RP, Bortholoto DF, Monteiro LV (2012) Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): implications for ore genesis. Miner Deposita 47:299–323

    Google Scholar 

  • Valley PM, Fisher CM, Hanchar JM, Lam R, Tubrett M (2010) Hafnium isotopes in zircon: a tracer of fluid–rock interaction during magnetite–apatite (“Kiruna-type”) mineralization. Chem Geol 275:208–220

    Google Scholar 

  • Velasco F, Tornos F, Hanchar JM (2016) Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366

    Google Scholar 

  • Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3−xTixO4). Am Mineral 69:754–770

    Google Scholar 

  • Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, southeast Australia. Am Mineral 73:281–296

    Google Scholar 

  • Whitten EHT (1995) Open and closed compositional data in petrology. Math Geol 27:789–806

    Google Scholar 

  • Williams PJ (2010a) Classifying IOCG deposits. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 13–22

    Google Scholar 

  • Williams PJ (2010b) "Magnetite-group" IOCGs with special reference to Cloncurry (NW Queensland) and northern Sweden: settings, alteration, deposit characteristics, fluid sources, and their relationship to apatite-rich iron ores. In: Corriveau L, Mumin H (eds) Exploring for iron oxide copper–gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes, vol 20, pp 23–38

    Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontbote L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper–gold deposits: geology, space–time distribution and possible modes of origin. In: Economic geology 100th anniversary volume. In: pp 371–405

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Google Scholar 

  • Xavier RP, Monteiro LVS, Moreto CPN, Pestilho ALS, De Melo GHC, Da Silva MAD, Aires B, Ribeiro C, E Silva FHF (2012) The iron oxide copper–gold systems of the Carajás mineral province, Brazil. Econ Geol Spec Publ 16:433–454

    Google Scholar 

  • Xu H, Shen Z, Konishi H (2014) Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. Am Mineral 99:2196–2202

    Google Scholar 

  • Zhang D, Rusk B, Oliver N, Dai T (2011) Trace element geochemistry of magnetite from the Ernest Henry IOCG Deposit, Australia. Proceedings of 11th Biennial SGA Meeting, 26–29 September 2011, Antofagasta, Chile, pp 479–481

  • Zhao WW, Zhou M-F (2015) In-situ LA–ICP-MS trace elemental analyses of magnetite: the Mesozoic Tengtie skarn Fe deposit in the Nanling range. South China Ore Geol Rev 65:872–883

    Google Scholar 

  • Zhao X-F, Zhou M-F (2011) Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide–copper–gold) metallogenic province. Miner Deposita 46:731–747

    Google Scholar 

Download references

Acknowledgements

This project was funded by China Scholarship Council (CSC, 201604910462), the Natural Science and Engineering Research Council (NSERC) of Canada, Agnico Eagle Mines Limited, and Ministry of Natural Resources of Quebec within the NSERC–Agnico Eagle Industrial Research Chair in Mineral Exploration. It is also conducted in collaboration with participants of the Targeted Geoscience Initiative program of the Geological Survey of Canada (GSC). We thank Marc Choquette (Laval U.) and Dany Savard (UQAC) for their assistance with EPMA and LA-ICP-MS analyses, respectively. Special thanks to Michel Jebrak (UQAM), Sarah Dare (U. of Ottawa), Lluis Fontboté (U. of Geneva), Isabelle McMartin (GSC), Roberto Perez Xavier (USP São Paulo), Robert Marschik (LMU Munich), and John Hanchar (Memorial U. of Newfoundland) who provided representative samples. We thank Pedro Acosta-Góngora (GSC) for constructive comments on the early manuscript. We also acknowledge careful reviews by Jaayke Knipping and an anonymous reviewer, and editorial handling by Frank Melcher and Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wen Huang.

Additional information

Editorial handling: F. Melcher

Electronic supplementary material

ESM 1

(PDF 143 kb)

ESM 2

(PDF 131 kb)

ESM 3

(PDF 754 kb)

ESM 4

(PDF 355 kb)

ESM 5

(PDF 905 kb)

ESM 6

(PDF 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XW., Boutroy, É., Makvandi, S. et al. Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Miner Deposita 54, 525–552 (2019). https://doi.org/10.1007/s00126-018-0825-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0825-1

Keywords

Navigation