Skip to main content
Log in

Molybdenum cycling in Andean-type subduction and metallogenic implications

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We have conducted Mo isotope analyses of granites and related hydrothermal molybdenite from six Sn-W deposits in the western belt of the Southeast Asian Tin Province (Myanmar and Yunnan, China). Our data show that tin granites have notably heavier Mo isotope compositions (avg. δ98Mo = 0.44 ‰) than arc lavas (avg. δ98Mo = −0.12 ‰). The lack of systematic variation of Mo isotope composition with SiO2, Differentiation Index, Rb/Sr, and Zr/Hf values of the studied tin granites suggests there was no Mo isotope fractionation caused by fractional crystallization of the reduced magma. We infer that the elevated Mo isotope compositions in tin granites are mainly inherited from reduced sedimentary sources with black shales (avg. δ98Mo = 0.44 ‰). We also observed remarkable Mo isotope fractionation during the magmatic-hydrothermal transition. The preferential incorporation of Mo4+ and isotopically light Mo into magmatic sulfides and partitioning of Mo6+ and heavy Mo isotopes into hydrothermal fluids account for significant fluid-melt fractionation of Mo isotopes during fluid exsolution from the reduced melt. The elevated Mo isotope composition in hydrothermal molybdenite from granite-related Sn-W deposits compared to that of porphyry Cu–Mo deposits derives from both the notably heavy Mo isotope signature of the reduced sedimentary sources and fluid-melt fractionation of Mo isotopes during the magmatic-hydrothermal transition. The sequestration of Mo during crystallization of reduced melt and the low Mo precipitation efficiency in the hydrothermal evolution prevents the formation of economic Mo mineralization in reduced magmatic-hydrothermal systems. Combined with published data from different Mo sinks, we propose a Mo cycling and isotope fractionation model for arc and back-arc systems of Andean-type subduction settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad Q, Wille M, König S, Rosca C, Hensel A, Pettke T, Hermann J (2021) The molybdenum isotope subduction recycling conundrum: a case study from the Tongan subduction zone, Western Alps and Alpine Corsica. Chem Geol 576. https://doi.org/10.1016/j.chemgeo.2021.120231

  • Anbar AD (2004) Molybdenum stable isotopes: observations, interpretations and directions. Rev Mineral Geochem 55:429–454

    Article  Google Scholar 

  • Archer C, Vance D (2008) The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci 1:597–600

    Article  Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304:87–90

    Article  Google Scholar 

  • Bali E, Keppler H, Audetat A (2012) The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet Sci Lett 351-352:195–207

    Article  Google Scholar 

  • Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217:315–329

    Article  Google Scholar 

  • Barling J, Arnold GL, Anbar AD (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457

    Article  Google Scholar 

  • Bezard R, Fischer-Gödde M, Hamelin C, Brennecka GA, Kleine T (2016) The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett 453:171–181

    Article  Google Scholar 

  • Breillat N, Guerrot C, Marcoux E, Négrel P (2016) A new global database of δ98Mo in molybdenites: a literature review and new data. J Geochem Explor 161:1–15

    Article  Google Scholar 

  • Brucker RLP, McManus J, Severmann S, Berelson WM (2009) Molybdenum behavior during early diagenesis: insights from Mo isotopes. Geochem Geophys Geosyst 10:Q06010. https://doi.org/10.1029/2008GC002180

    Article  Google Scholar 

  • Chang J, Li JW, Zhou L (2020) Molybdenum isotopic fractionation in the Tibetan Yulong Cu-Mo deposit and its implications for mechanisms of molybdenite precipitation in porphyry ore systems. Ore Geol Rev 123. https://doi.org/10.1016/j.oregeorev.2020.103571

  • Chen S, Hin RC, John T, Brooker R, Bryan B, Niu Y, Elliott T (2019) Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration. Nat Commun 10:4773

    Article  Google Scholar 

  • Chen XC, Hu RZ, Bi XW, Li HM, Lan JB, Zhao CH, Zhu JJ (2014) Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China. Mineral Deposita 49:843–860

    Article  Google Scholar 

  • Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH, Zhu JJ (2015) Petrogenesis of metaluminous A-type granitoids in the Tengchong–Lianghe tin belt of southwestern China: Evidences from zircon U–Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes. Lithos 212-215:93–110

    Article  Google Scholar 

  • Clark AH, Farrar E, Kontak DJ, Langridge RJ, Arenas MJ, France LJ, McBride SL, Woodman PL, Wasteneys HA, Sandeman HA, Archibald DA (1990) Geologic and geochronologic constraints on the metallogenic evolution of the Andes of southeastern Peru. Econ Geol 85:1520–1583

    Article  Google Scholar 

  • Cobbing EJ, Mallic DIJ, Pitfield PEJ, Teoh LH (1986) The granites of the Southeast Asian tin belt. J Geol Soc Lond 143:537–550

    Article  Google Scholar 

  • Cong F, Wu FY, Li WC, Wang JG, Hu FY, He DF, Ji WQ, Lin W, Sein K (2021) Petrogenesis of the main range and eastern province granites in eastern Myanmar: new insights from zircon U-Pb ages and Sr–Nd isotopes. Lithos 105895:382–383

  • Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S (2014) The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet Sci Lett 392:250–264

    Article  Google Scholar 

  • Dong B, Long X, Li J, Yang X, Zhao B, Luo J (2019) Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China: evidence for redox environment corresponding to the Cambrian Explosion. Gondwana Res 69:45–55

    Article  Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64:1149–1158

    Article  Google Scholar 

  • Freymuth H, Elliott T, Soes M, Skora S (2016) Tracing subducted black shales in the Lesser Antilles arc using molybdenum isotope ratios. Geology 44:987–990

    Article  Google Scholar 

  • Freymuth H, Vils F, Willbold MN, Taylor R, Elliott T (2015) Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth Planet Sci Lett 432:176–186

    Article  Google Scholar 

  • Gardiner NJ, Robb LJ, Morley CK, Searle MP, Cawood PA, Whitehouse MJ, Kirkland CL, Roberts NMW, Myint TA (2016a) The tectonic and metallogenic framework of Myanmar: a Tethyan mineral system. Ore Geol Rev 79:26–45

    Article  Google Scholar 

  • Gardiner NJ, Searle MP, Morley CK, Whitehouse MP, Spencer CJ, Robb LJ (2016b) The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: new insights from zircon U–Pb and Hf isotope data. Gondwana Res 39:401–422

    Article  Google Scholar 

  • Gardiner NJ, Searle MP, Robb LJ, Morley CK (2015) Neo-Tethyan magmatism and metallogeny in Myanmar – an Andean analogue? J Asian Earth Sci 106:197–215

    Article  Google Scholar 

  • Goldberg T, Gordon G, Izon G, Archer C, Pearce CR, McManus J, Anbar AD, Rehkämper M (2013) Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J Anal At Spectrom 28:724–735

    Article  Google Scholar 

  • Goldberg T, Poulton SW, Wagner T, Kolonic SF, Rehkämper M (2016) Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2. Earth Planet Sci Lett 440:81–91

    Article  Google Scholar 

  • Gordon GW, Lyons TW, Arnold GL, Roe J, Sageman BB, Anbar AD (2009) When do black shales tell molybdenum isotope tales? Geology 37:535–538

    Article  Google Scholar 

  • Greber ND, Hofmann BA, Voegelin AR, Villa IM, Nägler TF (2011) Mo isotope composition in Mo-rich high- and low-T hydrothermal systems from the Swiss Alps. Geochim Cosmochim Acta 75:6600–6609

    Article  Google Scholar 

  • Greber ND, Pettke T, Nägler TF (2014) Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190-191:104–110

    Article  Google Scholar 

  • Greber ND, Siebert C, Nägler TF, Pettke T (2012) δ98/95Mo values and molybdenum concentration data for NIST SRM 610, 612 and 3134: towards a common protocol for reporting Mo data. Geostand Geoanal Res 36:291–300

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Hannah JL, Stein HJ, Wieser ME, de Laeter JR, Varner MD (2007) Molybdenum isotope variations in molybdenite: vapor transport and Rayleigh fractionation of Mo. Geology 35:703–706

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol 85:457–481

    Article  Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27:293–305

    Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Economic Geology 75th Anniversary Volume, 458–484.

  • Ishihara S, Sawata H, Shibata K, Terashima S, Arrykul S, Sato K (1980) Granites and Sn-W deposits of peninsular Thailand: Mining. Geology Spec Issue 8:223–241

    Google Scholar 

  • Jiménez N, López-Velásquez S (2008) Magmatism in the Huarina belt, Bolivia, and its geotectonic implications. Tectonophysics 459:85–106

    Article  Google Scholar 

  • Kaufmann AKC, Pettke T, Wille M (2021) Molybdenum isotope fractionation at upper-crustal magmatic-hydrothermal conditions. Chem Geol 578:120319

    Article  Google Scholar 

  • Kendall B, Creaser RA, Gordon GW and Anbar AD (2009) Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta 73:2534–2558

  • Kendall B, Dahl TW, Anbar AD (2017) The stable isotope geochemistry of molybdenum. Rev Mineral Geochem 82:683–732

    Article  Google Scholar 

  • Kong DX, Cao K, Xu JF, Li J, Li W (2021) Molybdenum isotope systematics of subduction-related magmas from the Zhongdian region: assessing the Mo fractionation behavior in magmatic-hydrothermal processes. Ore Geol Rev 133. https://doi.org/10.1016/j.oregeorev.2021.104089

  • König S, Wille M, Voegelin A, Schoenberg R (2016) Molybdenum isotope systematics in subduction zones. Earth Planet Sci Lett 447:95–102

    Article  Google Scholar 

  • Kudrin AV (1989) Behavior of Mo in aqueous NaCl and KCl solutions at 300-450 °C. Geochem Int 26:87–99

    Google Scholar 

  • Lehmann B (1982) Metallogeny of tin: magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59

    Article  Google Scholar 

  • Lehmann B (1987) Tin granites, geochemical heritage, magmatic differentiation. Geol Rundsch 76:177–185

    Article  Google Scholar 

  • Lehmann B (1990) Metallogeny of Tin. Springer, Berlin Heidelberg, pp 1–211

    Google Scholar 

  • Lehmann B (2021) Formation of tin ore deposits: a reassessment. Lithos 402-403, 105756. https://doi.org/10.1016/j.lithos.2020.105756

  • Lehmann B, Ishihara S, Michel H, Miller J, Rapela C, Sanchez A, Tistl M, Winkelmann L (1990) The Bolivian tin province and regional tin distribution in the Central Andes: a reassessment. Econ Geol 85:1044–1058

    Article  Google Scholar 

  • Lehmann B, Mahawat C (1989) Metallogeny of tin in central Thailand: A genetic concept. Geology 17:426–429

    Article  Google Scholar 

  • Li HY, Zhao RP, Li J, Tamura Y, Spencer C, Stern RJ, Ryan JG, Xu YG (2021a) Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc. Nature. Communications 12:6015. https://doi.org/10.1038/s41467-021-26322-8

    Article  Google Scholar 

  • Li J, Liang XR, Zhong LF, Wang XC, Ren ZY, Sun SL, Zhang ZF, Xu JF (2014) Measurement of the isotopic composition of molybdenum in geological samples by MC-ICP-MS using a novel chromatographic extraction technique. Geostand Geoanal Res 38:345–354

    Article  Google Scholar 

  • Li JX, Fan WM, Zhang LY, Evans NJ, Sun YL, Ding L, Guan QY, Peng TP, Cai FL, Sein K (2019a) Geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of Late Cretaceous–Eocene granites in southern Myanmar: Petrogenetic, tectonic and metallogenic implications. Ore Geol Rev 112. https://doi.org/10.1016/j.oregeorev.2019.103031

  • Li JX, Zhang LY, Fan WM, Ding L, Sun YL, Peng TP, Li GM, Sein K (2018) Mesozoic-Cenozoic tectonic evolution and metallogeny in Myanmar: Evidence from zircon/cassiterite U–Pb and molybdenite Re–Os geochronology. Ore Geol Rev 102:829–845

    Article  Google Scholar 

  • Li X, Yan Q, Zeng Z, Fan J, Li S, Li J, Yang H, Wang X (2021b) Across-arc variations in Mo isotopes and implications for subducted oceanic crust in the source of back-arc basin volcanic rocks. Geology 49:1165–1170

    Article  Google Scholar 

  • Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC, Tao H (2010) Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb ages. Geostand Geoanal Res 34: 117–134.

  • Li Y, McCoy-West AJ, Zhang S, Selby D, Burton KW, Horan K (2019b) Controlling mechanisms for molybdenum isotope fractionation in porphyry deposits: the Qulong example. Econ Geol 114:981–992

    Article  Google Scholar 

  • Liang YH, Halliday AN, Siebert C, Fitton JG, Burton KW, Wang KL, Harvey J (2017) Molybdenum isotope fractionation in the mantle. Geochim Cosmochim Acta 199:91–111

    Article  Google Scholar 

  • Linnen RL, Pichavant M, Holtz F, Burgess S (1995) The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar. Geochimica et Cosmochimica Acta 59:1579–1588

  • Linnen RL, Pichavant M, Holtz F (1996) The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta 60:4965–4976

  • Little W (1960) Inclusions in cassiterite and associated minerals. Econ Geol 55:485–509

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Güther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546

    Article  Google Scholar 

  • Loucks RR, Fiorentini ML, Henríquez GJ (2020) New magmatic oxybarometer using trace elements. J Petrol 61:egaa034. https://doi.org/10.1093/petrology/egaa034

    Article  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Article  Google Scholar 

  • Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J (2007) Variations in the isotopic composition of molybdenum in freshwater lake systems. Chem Geol 236:181–198

    Article  Google Scholar 

  • Mao W, Zhong H, Yang JH, Liu L, Fu YZ, Zhang XC, Tang YW, Li J, Zhang L, Sein K, Aung SM, Paw SMTL, Doh SH (2022) Geochronology of Sn mineralization in Myanmar: metallogenic implications. Econ Geol 117:1387–1403

    Article  Google Scholar 

  • Mao W, Zhong H, Yang JH, Tang YW, Liu L, Fu YZ, Zhang XC, Sein K, Aung SM, Li J, Zhang L (2020) Combined zircon, molybdenite, and cassiterite geochronology and cassiterite geochemistry of the Kuntabin tin-tungsten deposit in Myanmar. Econ Geol 115:603–625

    Article  Google Scholar 

  • Mao Z, Cheng Y, Liu J, Yuan S, Wu S, Xiang X, Luo X (2013) Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxi Province, China. Ore Geol Rev 53:422–433

    Article  Google Scholar 

  • Mathur R, Brantley S, Anbar A, Munizaga F, Maksaev V, Newberry R, Vervoort J, Hart G (2010) Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Mineral Deposita 45:43–50

    Article  Google Scholar 

  • Mitchell AHG (1977) Tectonic settings for emplacement of Southeast Asian tin granites. Bulletin of the Geological Society of Malaysia 9:123–140

    Article  Google Scholar 

  • Mitchell AHG (1979) Rift-, subduction- and collision-related tin belts. Bulletin of the Geological Society of Malaysia 11:81–102

    Article  Google Scholar 

  • Mitchell AHG (1986) Mesozoic and Cenozoic regional tectonics and metallogenesis in Mainland SE Asia. Bulletin of the Geological Society of Malaysia 20:221–239

    Article  Google Scholar 

  • Mitchell AHG (1993) Cretaceous-Cenozoic tectonic events in the western Myanmar (Burma)-Assam region. J Geol Soc Lond 150:1809–1102

    Article  Google Scholar 

  • Mitchell AHG (2018) Geological belts, plate boundaries, and mineral deposits in Myanmar. Netherlands, Elsevier, Amsterdam, p 509

    Google Scholar 

  • Mitchell AHG, Garson MS (1981) Mineral deposits and global tectonic settings. Academic Press, London, p 450

    Google Scholar 

  • Mitchell AHG, Htay MT, Htun KM (2015) The medial Myanmar suture zone and the Western Myanmar-Mogok forland. Journal of Myanmar Geosciences Society 6:73–88

  • Nägler TF, Siebert C, Lüschen H, Böttcher ME (2005) Sedimentary Mo isotope record across the Holocene fresh–brackish water transition of the Black Sea. Chem Geol 219:283–295

    Article  Google Scholar 

  • Neubert N, Nägler TF, Böttcher ME (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–778

    Article  Google Scholar 

  • O'Neill HSC, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181

    Article  Google Scholar 

  • Qi L, Hu J, Gregoire DC (2000) Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51:507–513

    Article  Google Scholar 

  • Romer RL, Kroner U (2015) Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Mineral Deposita 50:327–338

    Article  Google Scholar 

  • Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 231:1054–1058

    Article  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the Continental Crust. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry 3. Elsevier, Amsterdam, pp 1–51

    Google Scholar 

  • Sato K (2012) Sedimentary crust and metallogeny of granitoid affinity: implications from the geotectonic histories of the circum-Japan Sea Region, Central Andes and Southeastern Australia. Resour Geol 62:329–351

    Article  Google Scholar 

  • Sato K, Kovalenko SV, Romanovsky NP, Nedachi M, Berdnikov NV, Ishihara T (2004) Crustal control on the redox state of granitoid magmas: tectonic implications from the granitoid and metallogenic provinces in the circum-Japan Sea Region. Earth Environ Sci Trans R Soc Edinb 95:319–337

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schwartz MO, Rajah SS, Askury A, Putthapiban P, Djaswadi S (1995) The Southeast Asian Tin Belt. Earth Sci Rev 38:95–263

    Article  Google Scholar 

  • Scott C, Lyons TW (2012) Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem Geol 324-325:19–27

    Article  Google Scholar 

  • Searle MP, Robb LJ, Gardiner NJ (2016) Tectonic processes and metallogeny along the Tethyan Mountain ranges of the Middle East and South Asia (Oman, Himalaya, Karakoram, Tibet, Myanmar, Thailand, Malaysia). Economic Geology Special Publication 19:301–327

  • Searle MP, Noble SR, Cottle JM, Waters DJ, Mitchell AHG, Hlaing T, Horstwood MSA (2007) Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics 26. https://doi.org/10.1029/2006TC002083

  • Segato A (2018) Mo isotope variations in molybdenites at single-crystal, ore deposit, and global scales: Implications for Mo source fluid, transport, fractionation mechanisms, and molybdenite, PhD. Thesis. University of Waterloo, p 82

    Google Scholar 

  • Shafiei B, Shamanian G, Mathur R, Mirnejad H (2014) Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems. Mineral Deposita 50:281–291

    Article  Google Scholar 

  • Siebert C, Nägler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Article  Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry deposits. Econ Geol 68:799–815

    Article  Google Scholar 

  • Sillitoe RH (1974) Tectonic segmentation of the Andes: implications for magmatism and metallogeny. Nature 250:542–545

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Skora S, Freymuth H, Blundy J, Elliott T, Guillong M (2017) An experimental study of the behaviour of cerium/molybdenum ratios during subduction: Implications for tracing the slab component in the Lesser Antilles and Mariana Arc. Geochim Cosmochim Acta 212:133–155

    Article  Google Scholar 

  • Sone M, Metcalfe I (2008) Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Compt Rendus Geosci 340:166–179

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Thornton CP, Tuttle OF (1960) Chemistry of igneous rocks I. Differentiation index American Journal of Science 258:664–684

    Google Scholar 

  • Tossell JA (2005) Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta 69:2981–2993

    Article  Google Scholar 

  • Tourtelot HA (1979) Black shale - Its deposition and diagenesis. Clays Clay Miner 27:313–321

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Soderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. Geochem Geophys Geosyst 5:1–15

    Article  Google Scholar 

  • Villalobos-Orchard J, Freymuth H, O'Driscoll B, Elliott T, Williams H, Casalini M, Willbold M (2020) Molybdenum isotope ratios in Izu arc basalts: The control of subduction zone fluids on compositional variations in arc volcanic systems. Geochim Cosmochim Acta 288:68–82

    Article  Google Scholar 

  • Voegelin AR, Pettke T, Greber ND, von Niederhäusern B, Nägler TF (2014) Magma differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean Arc). Lithos 190-191:440–448

    Article  Google Scholar 

  • Wang Y, Zhou L, Gao S, Li JW, Hu ZF, Yang L, Hu ZC (2015) Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan Plateau and its implications. Mineral Deposita 51:201–210

    Article  Google Scholar 

  • Westermann S, Vance D, Cameron V, Archer C, Robinson SA (2014) Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2. Earth Planet Sci Lett 404:178–189

    Article  Google Scholar 

  • Willbold M, Hibbert K, Lai YJ, Freymuth H, Hin RC, Coath C, Vils F, Elliott T (2016) High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined by double-spike MC-ICP-MS. Geostand Geoanal Res 40:389–403

    Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Yang J, Barling J, Siebert C, Fietzke J, Stephens E, Halliday AN (2017) The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochim Cosmochim Acta 205:168–186

    Article  Google Scholar 

  • Yang J, Siebert C, Barling J, Savage P, Liang YH, Halliday AN (2015) Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland. Geochim Cosmochim Acta 162:126–136

    Article  Google Scholar 

  • Yang JH, Zhou MF, Hu RZ, Zhong H, Williams-Jones AE, Liu L, Zhang XC, Fu YZ, Mao W (2020) Granite-related tin metallogenic events and key controlling factors in Peninsular Malaysia, Southeast Asia: new insights from cassiterite U-Pb dating and zircon geochemistry. Econ Geol 115:581–601

    Article  Google Scholar 

  • Yao JM, Mathur R, Sun WD, Song WL, Chen HY, Mutti L, Xiang XK, Luo XH (2016) Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field. Geochem Geophys Geosyst 17:1725–1739

    Article  Google Scholar 

  • Ye Y, Zhang S, Wang H, Wang X, Tan C, Li M, Wu C, Canfield DE (2021) Black shale Mo isotope record reveals dynamic ocean redox during the Mesoproterozoic Era. Geochemical Perspectives Letters 18:16–21

    Article  Google Scholar 

  • Zhang L, Audétat A, Dolejš D (2012) Solubility of molybdenite (MoS2) in aqueous fluids at 600–800°C 200 MPa: a synthetic fluid inclusion study. Geochim Cosmochim Acta 77:175–185

    Article  Google Scholar 

  • Zhang Q, Zhao KD, Li WQ, Palmer MR, Jiang SY, Jiang H, Zhang W, Zhang D, Hussain A (2021) Timing and tectonic setting of tin mineralization in southern Myanmar: constraints from cassiterite and wolframite U–Pb ages. Mineralium Deposita. https://doi.org/10.1007/s00126-021-01083-y

  • Zhao PL, Chu X, Williams-Jones AE, Mao JW, Yuan SD (2022) The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology 50:121–125

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments from Prof. Bernd Lehmann, Ryan Mathur, and an anonymous reviewer significantly improved this manuscript. We acknowledge the assistance from Dr. Kyaing Sein, Soe Myint Aung, and Ja Mu in the fieldwork. We thank Shengling Sun, Yezhi He, Junjie Han, and Defeng He for their assistance in the lab work.

Funding

This work was financially supported by the National Natural Science Foundation of China (42121003, 42073045, 42073046), the K.C. Wong Education Foundation (GJTD-2020-13), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (NO. 2023416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Mao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: B. Lehmann

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 56 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Zhong, H., Yang, J. et al. Molybdenum cycling in Andean-type subduction and metallogenic implications. Miner Deposita 58, 1263–1278 (2023). https://doi.org/10.1007/s00126-023-01178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01178-8

Keywords

Navigation