Skip to main content
Log in

The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Hydrothermal tourmaline is common in the iron oxide-copper-gold (IOCG) deposits of the Coastal Cordillera of Chile where it occurs as large crystals in the groundmass of magmatic-hydrothermal breccias, such as in the Silvita or Tropezón ore bodies, or as small grains in replacive bodies or breccia cement in the ore-bearing andesite, as seen at the Candelaria or Carola deposits. Tourmaline shows strong chemical zoning and has a composition of schorl–dravite with significant povondraite and uvite components. The observed boron isotope composition is fairly variable, between −10.4‰ and +6.0‰ with no major differences among the different deposits, suggesting a common genetic mechanism. The δ11B values are significantly lower than those of seawater or marine evaporites and very similar to those of younger porphyry copper deposits and volcanic rocks in the region, indicating that the boron has a common, likely magmatic, origin. The predominant boron source was ultimately dewatering of the subducting slab with a significant contribution derived from the overlying continental basement. The range of δ11B values is between those of the porphyry copper deposits and the porphyry tin deposits of the Andes, suggesting that the IOCG mineralization might be genetically related to fluids having more crustal contamination than the porphyry copper deposits; such an interpretation is at odds with current models that propose that the Andean IOCG deposits are related to juvenile melts or to the circulation of basinal brines. Furthermore, the obtained δ11B data are markedly different from those of the tourmaline in the Carajás IOCG district (Brazil), suggesting that IOCGs do not form by a unique mechanism involving only one type of fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Audetat A, Gunther D, Heinrich CA (2000) Magmatic hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochimica et Cosmochimica Acta 64:3373–3393

    Article  Google Scholar 

  • Barth S (1993) Boron isotope variations in nature: a synthesis. Geol Rundsch 82:640–651

    Article  Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe oxide-(Cu-Au) systems: implications for hydrothermal alteration and metals. In: Porter TM (ed), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, Australian Mineral Foundation, Adelaide, v.I., pp 43–60

  • Bebout GE, Nakamura E (2003) Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology 31:407–410

    Article  Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP, Bebout AE (1999) Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth and Planetary Science Letters 171:63–81

    Article  Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide-copper-gold district, III region, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440

    Article  Google Scholar 

  • Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth and Planetary Science Letters 187:273–282

    Article  Google Scholar 

  • Berg K, Breitkreuz C, Damm KW, Pichowiak S, Zeil W (1983) The North-Chilean Coast Range—an example for the development of an active continental margin. Geol Rundsch 72:715–731

    Article  Google Scholar 

  • Brown M, Diaz F, Grocott J (1993) Displacement history of the Atacama Fault System 25°00′S-27°-00′S, Northern Chile. Geol Soc Am Bull 105:1165–1174

    Article  Google Scholar 

  • Cembrano J, Gonzalez G, Arancibia G, Ahumada I, Olivares V, Herrera V (2005) Fault zone development and strain partitioning in an extensional strike-slip duplex: a case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics 40:105–125

    Article  Google Scholar 

  • Chaussidon M, Albarède F (1992) Secular boron isotope variations in the continental crust—an ion microprobe study. Earth and Planetary Science Letters 108:229–241

    Article  Google Scholar 

  • Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386

    Article  Google Scholar 

  • Chiaradia M, Banks D, Cliff R, Marschik R, de Haller A (2006) Origin of fluids in iron oxide-copper-gold deposits: constraints from δ37Cl, 87S/86Sri and Cl/Br. Mineralium Deposita 41:565–573

    Article  Google Scholar 

  • Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Reviews 18:303–332

    Article  Google Scholar 

  • Dallmeyer RD, Brown M, Grocott J, Taylor GK, Treloar PJ (1996) Mesozoic magmatic and tectonic events within the Andean plate boundary zone, 26°–27°30′S, North Chile: constraints from 40Ar/39Ar mineral ages. J Geol Soc 104:19–40

    Google Scholar 

  • Diaz A, Vivallo W, Jorquera R, Pizarra N (2003) Depósitos de Fe, óxidos de Fe-Cu-Au y su relación con el magmatismo del Cretácico Inferior, III Región de Atacama, Chile 10°Congreso Geológico Chileno. Concepción

  • Dreher AM, Xavier RP, Taylor BE, Martini SL (2008) New geologic, fluid inclusion and stable isotope studies on the controversial Igarape Bahia Cu-Au deposit, Carajás Province, Brazil. Mineralium Deposita 43:161–184

    Article  Google Scholar 

  • Dyar MD, Wiedenbeck M, Robertson D, Cross LR, Delaney JS, Ferguson K, Francis CA, Grew ES, Guidotti CV, Hervig RL, Hughes JM, Husler J, Leeman W, McGuire AV, Rhede D, Rothe H, Paul RL, Richards I, Yates M (2001) Reference minerals for microanalysis of light elements. Geostandarts Newsletter 25:441–463

    Article  Google Scholar 

  • Fauré G (1986) Principles of isotope geology. Wiley & Sons, New York, p 589

    Google Scholar 

  • Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochemistry Geophysics Geosystems 11, Q08015, 10 pp. doi:10.1029/2010GC003201

  • Frikken PH, Cooke DR, Walshe JL, Archibald D, Skarmeta J, Serrano L, Vargas R (2005) Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Rio Blanco-Los Bronces Cu-Mo deposit, Chile; implications for ore genesis. Econ Geol 100:935–961

    Google Scholar 

  • Gelcich S, Davis DW, Spooner ETC (2005) Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies and IOCG mineralization in Northern Chile. Geochimica et Cosmochimica Acta 69:3367–3384

    Article  Google Scholar 

  • Gonfiantini R, Tonarini S, Gröning M, Adorni-Braccesi A, Al-Ammar AS, Astner M, Bächler S, Barnes RM, Bassett RL, Cocherie A, Deyhle A, Dini A, Ferrara G, Gaillardet J, Grimm J, Guerrot C, Krähenbühl U, Layne G, Lemarchand D, Meixner A, Northington DJ, Pennisi M, Reitznerová E, Rodushkin I, Sugiura N, Surberg R, Tonn S, Wiedenbeck M, Wunderli S, Xiao Y, Zack T (2003) Intercomparison of boron isotope and concentration measurements. Part II: evaluation of results. Geostandards Newsletter 27:41–57

    Article  Google Scholar 

  • Grocott J, Taylor GK (2002) Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30′S to 27°00′S). J Geol Soc 159:425–442

    Article  Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Google Scholar 

  • Henriquez F, Dobbs FM, Espinoza S, Nystrom J, Travisany V, Vivallo W (1994) Origin of chilean magnetite-apatite ore deposits. In: 7°. Congreso Geologico Chileno 2:822–824

    Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral Geochem 33:503–557

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral—an example from the staurolite—grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalines. Eur J Mineral 20:889–904

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87:769–774

    Google Scholar 

  • Iriarte S (1993) Control estructural de la mineralización vetiforme en Mina Faride y su relación con el distrito de Sierra Gorda, región de Antofagasta. Thesis, Universidad de Chile, Santiago, Chile, p 200

    Google Scholar 

  • Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth and Planetary Science Letters 117:567–580

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across arc variation of B and Pb isotopes. Nature 370:205–208

    Article  Google Scholar 

  • Jiang SY, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93:47–67

    Article  Google Scholar 

  • Kasemann S, Erzinger J, Franz G (2000) Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contrib Mineral Petrol 140:328–343

    Article  Google Scholar 

  • Kasemann SA, Meixner A, Erzinger J, Viramonte JG, Alonso RN, Franz G (2004) Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). Journal of the South American Earth Sciences 16:685–697

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit (Chile): porphyry Cu-Mo ore deposition from low salinity magmatic fluids. Econ Geol 102:1021–1045

    Article  Google Scholar 

  • Krienitz MS, Trumbull RB, Hellmann A, Kolb J, Meyer FM, Wiedenbeck M (2008) Hydrothermal gold mineralization at the Hira Buddini gold mine, India: constraints on fluid evolution and fluid sources from boron isotopic compositions of tourmaline. Mineralium Deposita 43:421–434

    Article  Google Scholar 

  • Leeman WP, Sisson VB (2002) Geochemistry of boron and its implications for crustal and mantle processes. Rev Mineral Geochem 33:645–708

    Google Scholar 

  • Leeman W, Tonarini S (2001) Boron isotopic analysis of proposed borosilicate mineral reference samples. Geostandards Newsletter 25:399–403

    Article  Google Scholar 

  • Lehmann B, Dietrich A, Heinhorst J, Metrich N, Mosbahm M, Palacios C, Schneider H, Wallianos A, Webster J, Winkelmann L (2000) Boron in the Bolivian tin belt. Mineralium Deposita 35:223–232

    Article  Google Scholar 

  • Mark G, Oliver NHS, Williams PJ (2006) Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, northwest Queensland, Australia. Mineralium Deposita 40:769–801

    Article  Google Scholar 

  • Marschall HR, Ludwig T (2006) Re-examination of the boron isotopic composition of tourmaline from the Lavicky Granite, Czech Republic, by secondary ion mass spectrometry: back to normal. Critical comment on “Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic” by S.-Y. Jiang et al., Geochemical Journal, 37, 545–556, 2003. Geochemical Journal 40: 631–638

  • Marschall HR, Korsakov AY, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc 166:801–823

    Article  Google Scholar 

  • Marschik R, Fontboté L (2001a) The Candelaria-Punta del Cobre iron oxide Cu-Au(−Zn-Ag) deposits, Chile. Econ Geol 96:1799–1828

    Google Scholar 

  • Marschik R, Fontboté L (2001b) The Punta del Cobre Formation, Punta del Cobre-Candelaria area, Northern Chile. Journal of South American Earth Sciences 14:401–433

    Article  Google Scholar 

  • Marschik R, Fontignie D, Chiaradia M, Voldet P (2003a) Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó Plutonic Complex (27°30′S), Chile. Journal of South American Earth Sciences 16:281–398

    Article  Google Scholar 

  • Marschik R, Chiaradia M, Fontboté L (2003b) Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district, Chile. Mineralium Deposita 38:900–912

    Article  Google Scholar 

  • Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA, Martin W (2002) Age of mineralization of the Candelaria Fe Oxide Cu-Au deposit and the origin of the Chilean Iron belt, based on Re-OS isotopes. Econ Geol 97:59–71

    Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267

    Article  Google Scholar 

  • Mpodozis C, Ramos V (1990) The Andes of Chile and Argentina. In: Erikssen GE, Cañas MT, Reinemund JA (eds) Geology of the Andes and its relationship to hydrocarbon and mineral resources, vol 11. Circum Pacific Council Energy and Mineral Resources Earth Science Series, pp 59–90

  • Mumin AH, Corriveau L, Somarin AK, Ootes L (2007) Iron oxide copper-gold-type polymetallic mineralization in the Contact Lake Belt, Great Bear Magmatic Zone, Northwest Territories, Canada. Explor Min Geol 16:187–208

    Article  Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors 127:233–252

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Palmer MR, Swihart GH (1996) Boron isotope geochemistry: an overview. Rev Mineral Geochem 33:709–744

    Google Scholar 

  • Pesquera A, Torres F, Gil-Crespo P, Torres-Ruiz J (2008) TOURCOMP: a program for estimating end-member proportions in tourmalines. Mineral Mag 72:1021–1034

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Pollard PJ (2006) An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOGG) provinces. Mineralium Deposita 41:179–187

    Article  Google Scholar 

  • Rieger AA, Marschik R, Diaz M, Holzl S, Chiaradia M, Akker B, Spangenberg JE (2011) The hypogene iron oxide copper-gold mineralization in the Mantoverde District, Northern Chile. Econ Geol 105:1271–1299

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochemistry, Geophysics, Geosystems 4:1–25

    Article  Google Scholar 

  • Scheuber E, Andriessen PAM (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J Struct Geol 12:243–257

    Article  Google Scholar 

  • Schmitt AK, Kasemann S, Meixner A, Rhede D (2002) Boron in central Andean ignimbrites: implications for crustal boron cycles in an active continental margin. Chem Geol 183:333–347

    Article  Google Scholar 

  • Sillitoe RH (1976) Andean mineralization: a model for the metallogeny of convergent plate margins. In: Strong DF (ed) Metallogeny and Plate Tectonics. Geological Association of Canada Special Paper 14:59–100

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita 38:787–812

    Article  Google Scholar 

  • Sillitoe RH, Sawkins FJ (1971) Geologic, mineralogic and fluid inclusion studies relating to the origin of copper-bearing tourmaline breccia pipes, Chile. Econ Geol 66:1028–1041

    Article  Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541

    Article  Google Scholar 

  • Smith MP, Yardley BWD (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: an ion microprobe study. Geochimica et Cosmochimica Acta 60:1415–1427

    Article  Google Scholar 

  • Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochimica et Cosmochimica Acta 51:1033–1043

    Article  Google Scholar 

  • Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of boron isotopes. Geochimica et Cosmochimica Acta 51:1939–1949

    Article  Google Scholar 

  • Stern CR, Skewes ME (1995) Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, Central Chile. Revista Sociedad Geologica Chile 22:261–272

    Google Scholar 

  • Tagg SL, Cho H, Dyar MD, Grew ES (1999) Tetrahedral boron in naturally occurring tourmaline. Am Mineral 84:1451–1455

    Google Scholar 

  • Taylor BE, Slack JF (1984) Tourmalines from Appalachian–Caledonian massive sulfide deposits: textural, chemical, and isotopic relationships. Econ Geol 79:1703–1726

    Article  Google Scholar 

  • Taylor GK, Grocott J, Popec A, Randall DE (1998) Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike-slip duplex in the Coastal Cordillera of northern Chile. Tectonophysics 229:93–109

    Article  Google Scholar 

  • Tonarini S, Pennisi M, Adorni-Braccesi A, Dini A, Ferrara G, Gonfiantini R, Wiedenbeck M, Gröning M (2003) Intercomparison of boron isotope concentration measurements. Part I: selection, preparation and homogeneity tests of the intercomparison materials. Geostandards Newsletter 27:21–39

    Article  Google Scholar 

  • Tonarini S, Agostini S, Doglioni C, Innocenti F, Manetti P (2007) Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (Central America) arc lavas. Geochemistry Geophysics Geosystems 8. doi:10.1029/2006GC001508

  • Tornos F, Velasco F, Barra F, Morata D (2010) The Tropezón Cu-Mo-(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems? Mineralium Deposita 45:313–321

    Article  Google Scholar 

  • Vivallo W, Díaz A, Gelcich S, Lledó H (2000) Estilos y tipos de mineralización del Jurásico y Cretácico Inferior en la Cordillera de la Costa de la región de Copiapó, Chile. In: IX Congreso Geológico Chileno, vol 2, Puerto Varas, pp. 179–182

  • Wagner T, Mlynarczyk MSJ, Williams-Jones AE, Boyce AJ (2009) Stable isotope constraints on ore formation at the San Rafael tin-copper deposit, Southeast Peru. Econ Geol 104:223–248

    Article  Google Scholar 

  • Wiedenbeck M, Rhede D, Lieckefett R, Witzki H (2004) Cryogenic SIMS and its applications in the earth sciences. Appl Surf Sci 231(232):888–892

    Article  Google Scholar 

  • Williams P, Guoyi D, Pollard P, Broman C, Martinsson O, Wanhainen C, Mark G, Ryan CG, Mernagh T (2003) The nature of iron oxide-copper-gold ore fluids: Fluid inclusion evidence from Norbotten (Sweden) and the Cloncurry district (Australia). In: Eliopoulos,D.G., et al. (eds.), Mineral Exploration and Sustainable Development, Millpress Rotterdam, pp. 1127–1130

  • Williams P, Barton MD, Johnson DA, Fontboté L, Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology—one hundredth anniversary volume. Society of Economic Geologists, Littleton, pp 371–406

    Google Scholar 

  • Wittenbrink J, Lehmann B, Wiedenbeck M, Wallianos A, Dietrich A, Palacios A (2009) Boron isotope composition of melt inclusions from porphyry systems of the Central Andes: a reconnaissance study. Terra Nova 21:111–118

    Article  Google Scholar 

  • Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, Araújo CEG, Torresi I (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology 36:743–746

    Article  Google Scholar 

Download references

Acknowledgements

This study was done under the framework of project DGI-FEDER CGL2006-0378 of the Spanish Government and by internal funding of the SIMS Laboratory in Potsdam. It would not have been possible without the collaboration of Nicolae Pop (Minera Carola) and Manuel Erazo and Walter Gil (Minera Cenizas) who granted access to the mine site and assisted with petrologic interpretation of the samples. Thanks are also extended to Fernando Barra and Diego Morata (Universidad de Chile) for help on the study of the IOCG deposits. Our acknowledgement to Horst Marschall and John Slack for reviewing earlier versions of this manuscript and Bernd Lehmann for final editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tornos.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornos, F., Wiedenbeck, M. & Velasco, F. The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin. Miner Deposita 47, 483–499 (2012). https://doi.org/10.1007/s00126-011-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0383-2

Keywords

Navigation