Skip to main content
Log in

The Tropezón Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems?

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Badham JPN (1978) Magnetite–apatite–amphibole–uranium and silver–arsenide mineralizations in Lower Proterozoic igneous rocks, East Arm, Great Slave Lake, Canada. Econ Geol 73:1474–1491

    Article  Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II: hydrothermal alteration and mineralization. In: Skinner BJ (ed) Economic Geology 75th Anniversary Volume. Society of Economic Geologists, pp 235–269

  • Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide–copper–gold district, III region, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440

    Article  Google Scholar 

  • Berg K, Breitkreuz C, Damm KW, Pichowiak S, Zeil W (1983) The North-Chilean Coast Range—an example for the development of an active continental margin. Geol Rundsch 72:715–731

    Article  Google Scholar 

  • Boric R, Diaz F, Maksaev V (1990) Geologia y yacimientos metaliferos de la region de Antofagasta. Bol Serv Nac Geol Min 40:1–246

    Google Scholar 

  • Cembrano J, Gonzalez G, Arancibia G, Ahumada I, Olivares V, Herrera V (2005) Fault zone development and strain partitioning in an extensional strike–slip duplex: a case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics 400:105–125

    Article  Google Scholar 

  • Chiaradia M, Banks D, Cliff R, Marschik R, de Haller A (2006) Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87S/86Sri and Cl/Br. Miner Deposita 41:565–573

    Article  Google Scholar 

  • Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114

    Article  Google Scholar 

  • Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Sci Rev 18:303–332

    Article  Google Scholar 

  • Dallmeyer RD, Brown M, Grocott J, Taylor GK, Treloar PJ (1996) Mesozoic magmatic and tectonic events within the Andean Plate Boundary Zone, 26°–27°30′S, North Chile: constraints from 40Ar/39Ar mineral ages. J Geol Soc 104:19–40

    Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I. Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000°C, 0 to 5000 bar and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  Google Scholar 

  • Gehrels GE, Valencia VA, Ruiz J (2008) Enhanced precision, accuracy, efficiency, and spatial resolution of U–Pb ages by laser ablation–multicollector–inductively coupled–mass spectrometry. Geochem Geophys Geosyst 9. doi:10.1029/2007GC001805

  • Gelcich S, Davis DW, Spooner ETC (2005) Testing the apatite–magnetite geochronometer: U–Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite–apatite tabular bodies and IOCG mineralization in Northern Chile. Geochim Cosmochim Acta 69:3367–3384

    Article  Google Scholar 

  • Grocott J, Taylor GK (2002) Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30′S to 27°00′S). J Geol Soc 159:425–442

    Article  Google Scholar 

  • Heinrich C (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Deposita 39:864–889

    Article  Google Scholar 

  • Herrera V, Garmendia P, Pizarro R (2008) Proyecto Diego de Almagro: Geología y mineralización tipo IOCG, región de Atacama, Norte de Chile. Abstr XIII Congreso Latinoamericano de Geología. Lima, S03

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron-oxide (Cu–U–Au–REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit (Chile): porphyry Cu–Mo ore deposition from low salinity magmatic fluids. Econ Geol 102:1021–1045

    Article  Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA (2008) Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner Deposita 43:533–552

    Article  Google Scholar 

  • Lehmann B, Dietrich A, Heinhorst J, Métrich N, Mosbah M, Palacios C, Schneider H, Wallianos A, Webster J, Winkelmann L (2000) Boron in the Bolivian tin belt. Miner Deposita 35:223–232

    Article  Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration–mineralization in porphyry deposits. Econ Geol 65:378–404

    Article  Google Scholar 

  • Mark G, Foster DRW, Pollard PJ, Williams PJ, Tolman J, Darvall M, Blake KL (2004) Stable isotope evidence for magmatic fluid input during large scale Na–Ca alteration in the Conclurry Fe oxide Cu–Au district, NW Queensland, Australia. Terra Nova 16:54–61

    Article  Google Scholar 

  • Marschik R, Fontbote L (2001) The Candelaria–Punta del Cobre iron oxide Cu–Au(–Zn–Ag) deposits, Chile. Econ Geol 96:1799–1828

    Article  Google Scholar 

  • Marschik R, Sollner F (2006) Early Cretaceous U–Pb zircon ages for the Copiapo plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama Region, Chile. Miner Deposita 41:785–801

    Article  Google Scholar 

  • Marschik R, Fontignie D, Chiaradia M, Voldet P (2003) Geochemical and Sr–Nd–Pb–O isotope composition of granitoids of the Early Cretaceous Copiapó Plutonic Complex (27°30′S), Chile. J South Am Earth Sci 16:281–398

    Article  Google Scholar 

  • Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA, Martin W (2002) Age of mineralization of the Candelaria Fe Oxide Cu-Au deposit and the origin of the Chilean Iron belt, based on Re-OS isotopes. Econ Geol 97:59–71

    Google Scholar 

  • Meinert LD (1983) Variability of skarn deposits: guides to exploration In: Boardman SJ (ed) Revolution in the earth sciences—advances in the past half century. Kendall Hunt, Dubuque, pp 301–316

  • Naranjo JA, Puig A (1984) Hojas Taltal y Chañaral, regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Santiago

    Google Scholar 

  • Pollard PJ (2000) Evidence for magmatic fluid and metal source for Fe–oxide Cu–Au mineralization. In: Porter TM (ed) Hydrothermal Iron Oxide Copper–Gold & Related Deposits: A Global Perspective. Australian Mineral Foundation, Adelaide, pp 27–41

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Deposita 38:787–812

    Article  Google Scholar 

  • Sillitoe RH, Perelló J (2005) Andean copper province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology—100th anniversary volume. Society of Economic Geologists, Littleton, pp 845–890

    Google Scholar 

  • Skewes MA, Holmgren C, Stern CR (2003) The Donoso copper-rich tourmaline bearing breccia pipe in Central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids. Miner Deposita 38:2–21

    Article  Google Scholar 

  • Skirrow RG, Bastrakov EN, Baroncii K, Fraser GL, Creaser RA, Fanning CM, Raymond OL, Davidson GJ (2007) Timing of iron oxide Cu–Au–(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, south Australia. Econ Geol 102:1441–1470

    Article  Google Scholar 

  • Stein HJ, Hannah JL (1985) Movement and origin of ore fluids in Climax-type systems. Geology 13:469–474

    Article  Google Scholar 

  • Ulriksen CE (1979) Regional geology, geochronology and metallogeny of the Coastal Cordillera of Chile between 25°30′ and 26° South. Ms Thesis, Dalhousie University, pp 221

  • White WH, Bookstrom A, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. In: Skinner BJ (ed) Economic Geology—100th Anniversary Volume. Society of Economic Geologists, Littleton, pp 270–316

    Google Scholar 

  • Williams P, Barton MD, Johnson DA, Fontboté L, Ad H, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper–gold deposits: geology, space–time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology—100th Anniversary Volume. Society of Economic Geologists, Littleton, pp 371–406

    Google Scholar 

Download references

Acknowledgments

This study has been supported by the project CICYT–FEDER CGL2006-0378 of the Spanish Government and by internal funds of the IGME. It would not have been possible without the collaboration of Minera Cenizas Ltda, especially Manuel Erazo and Walter Gil that granted access to the mine site and helped with the information they could provide. U–Pb dating was performed at the Arizona LaserChron Center of the University of Arizona. Thanks are extended to Mario Arrieta, Verónica Herrera, Edgar Arocutipa, Mario Rojo, Haroldo Lledó, Eduardo Campos, and Martin Reich for helping us with different aspects of this project. Nick Badham, Marco Zentilli, and Chris Heinrich are also thanked for their help in the interpretation of the deposit, as well as Murray Hitzman for a previous review of the manuscript. Finally, it has benefited from the thoughtful comments of Lluis Fontboté, an anonymous referee, and the editor Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tornos.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornos, F., Velasco, F., Barra, F. et al. The Tropezón Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems?. Miner Deposita 45, 313–321 (2010). https://doi.org/10.1007/s00126-010-0277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0277-8

Keywords

Navigation