Skip to main content
Log in

Origin of fluids in iron oxide–copper–gold deposits: constraints from δ 37Cl, 87Sr/86Sri and Cl/Br

  • Letter
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The origin of the hypersaline fluids (magmatic or basinal brine?), associated with iron oxide (Cu–U–Au–REE) deposits, is controversial. We report the first chlorine and strontium isotope data combined with Cl/Br ratios of fluid inclusions from selected iron oxide–copper–gold (IOCG) deposits (Candelaria, Raúl–Condestable, Sossego), a deposit considered to represent a magmatic end member of the IOCG class of deposit (Gameleira), and a magnetite–apatite deposit (El Romeral) from South America. Our data indicate mixing of a high δ 37Cl magmatic fluid with near 0‰ δ 37Cl basinal brines in the Candelaria, Raúl–Condestable, and Sossego IOCG deposits and leaching of a few weight percent of evaporites by magmatic-hydrothermal (?) fluids at Gameleira and El Romeral. The Sr isotopic composition of the inclusion fluids of Candelaria, Raúl–Condestable, and El Romeral confirms the presence of a non-magmatic fluid component in these deposits. The heavy chlorine isotope signatures of fluids from the IOCG deposits (Candelaria, Raúl–Condestable, Sossego), reflecting the magmatic-hydrothermal component of these fluids, contrast with the near 0‰ δ 37Cl values of porphyry copper fluids known from the literature. The heavy chlorine isotope compositions of fluids of the investigated IOCG deposits may indicate a prevailing mantle Cl component in contrast to porphyry copper fluids, an argument also supported by Os isotopes, or could result from differential Cl isotope fractionation processes (e.g. phase separation) in fluids of IOCG and porphyry Cu deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789

    Article  Google Scholar 

  • Barros CEM, Sardinha AS, Barbosa JPO, Krimski R, Macambira MJB (2001) Pb–Pb and U–Pb zircon ages of Archean syntectonic granites of the Carajás metallogenetic province, northern Brazil. In: Simp. Sulamer Geol Isotopica, 3, Extended abstracts volume (Compact disc), Pucon, Chile, 21–24 October 2001

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72:1101–1130

    Google Scholar 

  • Cliff RA, Meffan-Main S (2003) Evidence from Rb–Sr microsampling geochronology for the timing of Alpine deformation in the Sonnblick Dome, South-east Tauern Window, Austria: In: Vance D, Muller W, Villa I (eds) Geochronology-linking the isotopic record with petrology and textures. Geological Society, Special Publications, London, 220:159–172

  • Dardenne MA, Ferreira Filho CF, Meirelles MR (1988) The role of shoshonitic and calc-alkaline suites in the tectonic evolution of the Carajás district, Brazil. J South Am Earth Sci 1:363–372

    Article  Google Scholar 

  • de Haller (2006) The Raúl–Condestable iron oxide copper–gold deposit, central coast of Peru. Terre et Environnement, University of Geneva, vol. 58, p 123

  • de Haller A, Zúñiga Alvarado J, F, Fontboté L (2002) The iron oxide–Cu–Au deposit of Raúl–Condestable, Mala, Lima, Peru. In: Abstracts of XI Congreso Peruano de Geologia, Lima, p 80

  • de Haller A, Corfu F, Fontboté L, Schaltegger U, Barra F, Chiaradia M, Frank M, Zúñiga AJ (2006) Geology, geochronology and Hf and Pb isotopic data of the Raúl–Condestable iron oxide copper–gold deposit, central coast of Peru. Econ Geol (in press)

  • Eastoe CJ, Guilbert JM (1992) Stable chlorine isotopes in hydrothermal processes. Geochim Cosmochim Acta 56:4247–4255

    Article  Google Scholar 

  • Eastoe CJ, Long A, Land LS, Kyle JR (2001) Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution. Chem Geol 176:343–360

    Article  Google Scholar 

  • Eggenkamp HGM, Kreulen R, van Groos FK (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175

    Article  Google Scholar 

  • Godon A, Jendrzejewski N, Castrec-Rouelle M, Dia A, Pineau F, Boulègue J, Javoy M (2000) Chlorine recycling in subduction zones: new constraints from chlorine stable isotopes. In: Journal of Conference Abstracts, Goldschmidt 2000, vol 5, p 447

  • Haynes DW (2000) Iron oxide–copper(–gold) deposits: their position in the ore deposit spectrum and modes of origin: In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits—a global perspective, vol. 1. PGC Publishing, Adelaide, Australia, pp 71–90

    Google Scholar 

  • Hitzman MW (2000) Iron oxide–Cu–Au deposits: what, where, when, and why? In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits—a global perspective, vol. 1. PGC Publishing, Adelaide, Australia, pp 9–25

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Johnson LH, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001) Fluid inclusion noble gas and halogen evidence on the origin of Cu–porphyry mineralising fluids. Geochim Cosmochim Acta 65:2651–2668

    Article  Google Scholar 

  • Lancaster Oliveira J, Fanton J, Almeida AJ, Leveille RA, Vieira S (2000) Discovery and geology of the Sossego copper–gold deposit, Carajás district, Pará State, Brazil. In: 31st International Geological Congress, Rio de Janeiro, Abstracts (Compact disc)

  • Lindenmayer ZG, Pimentel MM, Ronchi LH, Althoff FJ, Laux JH, Araújo JC, Fleck A, Bortowski DC, Nowatzki AC (2001) Geologia do depósito de Cu–Au do Gameleira, Serra dos Carajás, Pará. In: Jost H, Brod JA, Queiroz ET (eds) Caracterização de depósitos auriferous brasileiros, Brasília, ADIMB–DNPM, pp 79–139

  • Lüders V, Banks DA, Halbach P (2002) Extreme Cl/Br and δ37Cl isotope fractionation in fluids of modern submarine hydrothermal systems. Miner Depos 37:765–771

    Article  Google Scholar 

  • Machado N, Lindenmayer Z, Krogh TE, Lindenmayer D (1991) U–Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res 49:239–354

    Article  Google Scholar 

  • Magenheim A, Spivack A, Volpe C, Ransom B (1994) Precise low-level determination of stable chlorine isotopic ratios in silicate and aerosol samples. Geochim Cosmochim Acta 58:3117–3121

    Article  Google Scholar 

  • Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable isotope composition of the oceanic crust: implications for Earth’s distribution of chlorine. Earth Planet Sci Lett 131:427–432

    Article  Google Scholar 

  • Marschik R, Fontboté L (2001) The Candelaria–Punta del Cobre iron oxide Cu–Au(–Zn–Ag) deposits, Chile. Econ Geol 96:1799–1826

    Article  Google Scholar 

  • Marschik R, Singer BS, Munizaga F, Tassinari C, Moritz R, Fontboté L (1997) Age of Cu(–Fe) mineralization and thermal evolution of the Punta del Cobre District, Chile. Miner Depos 32:531–546

    Article  Google Scholar 

  • Marschik R, Leveille RA, Martin W (2000) La Candelaria and the Punta del Cobre district, Chile: Early Cretaceous iron oxide Cu–Au(–Zn–Ag) mineralization. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits—a global perspective, vol. 1. PGC Publishing, Adelaide, Australia, pp 163–175

    Google Scholar 

  • Marschik R, Mathur R, Ruiz J, Leveille RA, de Almeida AJ (2002) An Archean Re–Os molybdenite age for the Gameleira Cu–Au–Mo mineralization, Carajás Province, Brazil. Geological Society of America Annual Meeting, Abstracts and Program, 27–30 October 2002, Paper N 152–157

  • Marschik R, Spangenberg JE, Leveille RA, de Almeida AJ (2003) The Sossego iron oxide–Cu–Au deposit, Carajás, Brazil. In: Eliopoulos D et al (eds) Mineral exploration and sustainable development, vol 1. Rotterdam, pp 331–334

  • Marschik R, Mathur R, Ruiz J, Leveille RA, De Almeida AJ (2005) Late Archean Cu–Au–Mo mineralization at Gameleira and Serra Verde, Carajás Mineral Province, Brazil: constraints from Re–Os molybdenite ages. Miner Depos 39:983–991

    Article  Google Scholar 

  • Mathur R, Ruiz J, Munizaga F (2000) Relationship between copper tonnage of Chilean base–metal porphyry deposits and Os isotope ratios. Geology 28:555–558

    Article  Google Scholar 

  • Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA, Martin W (2002) Age of mineralization of the Candelaria iron oxide Cu–Au deposit, and the origin of the Chilean Iron Belt based on Re–Os isotopes. Econ Geol 97:59–71

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best-fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • McNutt RH, Crocket JH, Clark AH, Caelles JC, Farrar E, Haynes SJ (1975) Initial 87Sr/86Sr ratios of plutonic and volcanic rocks of the central Andes between latitudes 26° and 29° south. Earth Planet Sci Lett 27:305–313

    Article  Google Scholar 

  • Munizaga F, Huete C, Hervé F (1985) Geocronología K–Ar y razones iniciales 87Sr/86Sr de la “Faja Pacífica de Desarrollos Hidrotermales”. Proceedings IV Congreso Geológico Chileno, Antofagasta, pp 4/357–4/479

  • Olszewski WJ, Wirth KR, Gibbs AK, Gaudette HE (1989) The age, origin and tectonics of the Grão-Pará Group and associated rocks, Serra dos Carajás, Brazil. Precambrian Res 42:229–254

    Article  Google Scholar 

  • Pimentel MM, Lindenmayer ZG, Laux JH, Armstrong R, Caldas de Araújo J (2003) Geochronology and Nd isotope geochemistry of the Gameleira Cu–Au deposit, Serra dos Carajás, Brazil: 1.8–1.7 Ga hydrothermal alteration and mineralization. J South Am Earth Sci 15:803–813

    Article  Google Scholar 

  • Pitcairn I (2002) δ37Cl and Cl/Br systematics in volcanic gases. Thesis, University of Leeds, p 41

  • Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralization. In: Porter TM (ed) Hydrothermal iron oxide–copper–gold and related deposits—a global perspective, vol. 1. PGC Publishing, Adelaide, Australia, pp 27–41

    Google Scholar 

  • Pollard PJ (2006) An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner Depos 41:179–187

    Article  Google Scholar 

  • Rabbia OM, Frutos J, Pop N, Isache C, Sanhueza V, Edelstein O (1996) Características isotópicas de la mineralización estratoligada de Cu(–Fe) de Mina Carola, distito minero Punta del Cobre, norte de Chile. 8 Congreso Geológico Argentino, Buenos Aires, Actas, pp 241–254

  • Ripley EM, Ohmoto H (1977) Mineralogic, sulfur isotope, and fluid inclusion studies of the stratabound copper deposits at the Raul mine, Peru. Econ Geol 72:1017–1041

    Article  Google Scholar 

  • Ronchi LH, Lindenmayer ZG, Araújo JC (2000) The Gameleira Cu (Mo–Au) deposit: fluids and hydrothermal alteration (Carajás, Brazil).In: 31st International Geological Congress, Rio de Janeiro, Abstract volume (Compact disc)

  • Rosenbaum JM, Cliff RA, Coleman ML (2000) Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal Chem 72:2261–2264

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide–copper–gold deposits: an Andean view. Miner Depos 38:787–812

    Article  Google Scholar 

  • Stewart MA, Spivack AJ (2004) The stable-chlorine isotopic compositions of natural and anthropogenic materials. Rev Mineral Geochem 55:231–254

    Article  Google Scholar 

  • Ullrich TD, Clark AH, Kyser TK (2001) The Candelaria Cu–Au deposit, III Region, Chile: product of long-term mixing of magmatic-hydrothermal and evaporite-sourced fluids. In: Geological Society of America Abstracts with Programs 33/6, p A3

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide–copper–gold deposits: geology, space–time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100 Anniversary Volume, Littleton CO, Society of Economic Geologists, pp 371–405

Download references

Acknowledgements

A previous version of this manuscript has benefited from the critical reviews by Mark Barton and Peter Pollard. RM thanks Phelps Dodge Exploration Corp. and C.C. Minera Candelaria for their support. We thank V. Lüders for profitable discussions and Bernd Lehmann for editorial handling and useful comments. This work was supported by NERC through JIF award NER/H/S/2000/00853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Chiaradia.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiaradia, M., Banks, D., Cliff, R. et al. Origin of fluids in iron oxide–copper–gold deposits: constraints from δ 37Cl, 87Sr/86Sri and Cl/Br. Miner Deposita 41, 565–573 (2006). https://doi.org/10.1007/s00126-006-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-006-0082-6

Keywords

Navigation