Skip to main content

Advertisement

Log in

Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington’s disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by an increased and unstable CAG DNA expansion in the Huntingtin (HTT) gene, resulting in an elongated polyglutamine tract in huntingtin protein. Despite its monogenic cause, HD pathogenesis remains elusive and without any approved disease-modifying therapy as yet. A growing body of evidence highlights the emerging role of high-mobility group box 1 (HMGB1) protein in HD pathology. HMGB1, being a nuclear protein, is primarily implicated in DNA repair, but it can also translocate to the cytoplasm and participate into numerous cellular functions. Cytoplasmic HMGB1 was shown to directly interact with huntingtin under oxidative stress conditions and induce its nuclear translocation, a key process in the HD pathogenic cascade. Nuclear HMGB1 acting as a co-factor of ataxia telangiectasia mutated and base excision repair (BER) complexes can exert dual roles in CAG repeat instability and affect the final DNA repair outcome. HMGB1 can inhibit mutant huntingtin aggregation, protecting against polyglutamine-induced neurotoxicity and acting as a chaperon-like molecule, possibly via autophagy regulation. In addition, HMGB1 being a RAGE and TLR-2, TLR-3, and TLR-4 ligand may further contribute to HD pathogenesis by triggering neuroinflammation and apoptosis. Furthermore, HMGB1 participates at the unfolded protein response (UPR) system and can induce protein degradation and apoptosis associated with HD. In this review, we discuss the multiple role of HMGB1 in HD pathology, providing mechanistic insights that could direct future studies towards the development of targeted therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25:24–34

    Article  CAS  PubMed  Google Scholar 

  2. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    Article  CAS  PubMed  Google Scholar 

  3. Sun Y-M, Zhang Y-B, Wu Z-Y (2017) Huntington’s disease: relationship between phenotype and genotype. Mol Neurobiol 54:342–348

    Article  CAS  PubMed  Google Scholar 

  4. Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fan H-C, Ho L-I, Chi C-S, Chen S-J, Peng G-S, Chan T-M, Lin S-Z, Harn H-J (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23:441–458

    Article  PubMed  Google Scholar 

  6. Illarioshkin S, Klyushnikov S, Vigont V, Seliverstov YA, Kaznacheyeva E (2018) Molecular pathogenesis in Huntington’s disease. Biochem Mosc 83:1030–1039

    Article  CAS  Google Scholar 

  7. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, Blair NF, Craufurd D, Priller J, Rickards H et al (2019) Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med 380:2307–2316

    Article  CAS  PubMed  Google Scholar 

  8. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, X-g F, Yan Z (2014) HMGB1 in health and disease. Mol Asp Med 40:1–116

    Article  CAS  Google Scholar 

  9. Kang R, Livesey KM, Zeh I, Herbert J, Lotze MT, Tang D (2011) HMGB1 as an autophagy sensor in oxidative stress. Autophagy 7:904–906

    Article  PubMed  Google Scholar 

  10. Saudou F, Humbert S (2016) The biology of huntingtin. Neuron 89:910–926

    Article  CAS  PubMed  Google Scholar 

  11. Correia K, Harold D, Kim K-H, Holmans P, Jones L, Orth M, Myers RH, Kwak S, Wheeler VC, MacDonald ME (2015) The genetic modifiers of motor OnsetAge (GeM MOA) website: genome-wide association analysis for genetic modifiers of Huntington’s disease. Journal of Huntington's disease 4:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moss DJH, Pardiñas AF, Langbehn D, Lo K, Leavitt BR, Roos R, Durr A, Mead S, Coleman A, Santos RD (2017) Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. The Lancet Neurology 16:701–711

    Article  CAS  PubMed  Google Scholar 

  13. Genetic Modifiers of Huntington's Disease Consortium. Electronic address ghmhe, Genetic Modifiers of Huntington's Disease C (2019) CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178(887–900):e814. https://doi.org/10.1016/j.cell.2019.06.036

    Article  CAS  Google Scholar 

  14. Langbehn DR, Hayden MR, Paulsen JS, the P-HDIotHSG (2010) CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 153B:397–408

    Article  CAS  Google Scholar 

  15. Takano H, Gusella JF (2002) The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo Q, Bin H, Cheng J, Seefelder M, Engler T, Pfeifer G, Oeckl P, Otto M, Moser F, Maurer M et al (2018) The cryo-electron microscopy structure of huntingtin. Nature 555:117–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Chu H, Lv M, Zhang Z, Qiu S, Liu H, Shen X, Wang W, Cai G (2016) Structure of the intact ATM/Tel1 kinase. Nat Commun 7:11655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Desmond CR, Atwal RS, Xia J, Truant R (2012) Identification of a karyopherin beta1/beta2 proline-tyrosine nuclear localization signal in huntingtin protein. J Biol Chem 287:39626–39633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Son S, Bowie LE, Maiuri T, Hung CL, Desmond CR, Xia J, Truant R (2019) High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J Biol Chem 294:1915–1923

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Z, Li A, Holmes BB, Marasa JC, Diamond MI (2013) An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1. J Biol Chem 288:6063–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DiGiovanni LF, Mocle AJ, Xia J, Truant R (2016) Huntingtin N17 domain is a reactive oxygen species sensor regulating huntingtin phosphorylation and localization. Hum Mol Genet 25:3937–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, Truant R (2011) Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol 7:453

    Article  CAS  PubMed  Google Scholar 

  23. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191

    Article  CAS  PubMed  Google Scholar 

  24. Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, Xiao X (2007) Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 81:741–747

    Article  CAS  PubMed  Google Scholar 

  25. Min HJ, Ko EA, Wu J, Kim ES, Kwon MK, Kwak MS, Choi JE, Lee JE, Shin J-S (2013) Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J Immunol 190:1797–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujita K, Okazawa H (2017) Molecularly-targeted therapy of spinocerebellar ataxia type 1 by HMGB1. Brain and nerve= Shinkei kenkyu no shinpo 69:925–932

    CAS  PubMed  Google Scholar 

  27. Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B (2012) Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 133:157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    Article  CAS  PubMed  Google Scholar 

  30. Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, Prives C (1998) High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng Z, Jin S, Zupnick A, Hoh J, De Stanchina E, Lowe S, Prives C, Levine A (2006) p53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene 25:1

    Article  PubMed  CAS  Google Scholar 

  32. Maiuri T, Mocle AJ, Hung CL, Xia J, van Roon-Mom WM, Truant R (2016) Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum Mol Genet 26:395–406

    Article  CAS  Google Scholar 

  33. Lu X-H, Mattis VB, Wang N, Al-Ramahi I, van den Berg N, Fratantoni SA, Waldvogel H, Greiner E, Osmand A, Elzein K (2014) Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington’s disease. Science translational medicine 6:268–178

    Google Scholar 

  34. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  CAS  PubMed  Google Scholar 

  35. Khoronenkova SV, Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc Natl Acad Sci U S A 112:3997–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herzog K-H, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089–1091

    Article  CAS  PubMed  Google Scholar 

  37. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R Jr, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    Article  CAS  PubMed  Google Scholar 

  38. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–626

    Article  CAS  PubMed  Google Scholar 

  39. Giuliano P, de Cristofaro T, Affaitati A, Pizzulo GM, Feliciello A, Criscuolo C, De Michele G, Filla A, Avvedimento EV, Varrone S (2003) DNA damage induced by polyglutamine-expanded proteins. Hum Mol Genet 12:2301–2309

    Article  CAS  PubMed  Google Scholar 

  40. Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, Sone M, Foulle R, Sawada H, Ishiguro H (2010) Mutant huntingtin impairs Ku70-mediated DNA repair. J Cell Biol 189:425–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bae B-I, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47:29–41

    Article  CAS  PubMed  Google Scholar 

  42. Tidball AM, Bryan MR, Uhouse MA, Kumar KK, Aboud AA, Feist JE, Ess KC, Neely MD, Aschner M, Bowman AB (2014) A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease. Hum Mol Genet 24:1929–1944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Qi M-L, Tagawa K, Enokido Y, Yoshimura N, Y-i W, Watase K, S-i I, Kanazawa I, Botas J, Saitoe M (2007) Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol 9:402

    Article  CAS  PubMed  Google Scholar 

  44. Enokido Y, Yoshitake A, Ito H, Okazawa H (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun 376:128–133

    Article  CAS  PubMed  Google Scholar 

  45. Goula A-V, Pearson CE, Della Maria J, Trottier Y, Tomkinson AE, Wilson DM III, Merienne K (2012) The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats. Biochemistry 51:3919–3932

    Article  CAS  PubMed  Google Scholar 

  46. Beaver JM, Lai Y, Rolle SJ, Liu Y (2016) Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal. DNA repair 48:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freudenreich CH, Kantrow SM, Zakian VA (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–856

    Article  CAS  PubMed  Google Scholar 

  49. Goula A-V, Berquist BR, Wilson DM III, Wheeler VC, Trottier Y, Merienne K (2009) Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 5:e1000749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH (2009) Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J Biol Chem 284:28352–28366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729

    Article  CAS  PubMed  Google Scholar 

  52. Slean MM, Reddy K, Wu B, Nichol Edamura K, Kekis M, Nelissen FH, Aspers RL, Tessari M, Schärer OD, Wijmenga SS (2013) Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome. Biochemistry 52:773–785

    Article  CAS  PubMed  Google Scholar 

  53. Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington’s disease. Exp Neurol 238:1–11

    Article  CAS  PubMed  Google Scholar 

  54. McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9:2197–2202

    Article  CAS  PubMed  Google Scholar 

  55. Donaldson KM, Li W, Ching KA, Batalov S, Tsai C-C, Joazeiro CA (2003) Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci 100:8892–8897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo MR, Porcellini A, Avvedimento VE (2011) Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem 286:4727–4741

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Waldvogel HJ, Faull RL, Curtis MA, Nicholson LF (2015) The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington’s disease. J Neurochem 134:927–942

    Article  CAS  PubMed  Google Scholar 

  58. Ma L, Nicholson LF (2004) Expression of the receptor for advanced glycation end products in Huntington's disease caudate nucleus. Brain Res 1018:10–17

    Article  CAS  PubMed  Google Scholar 

  59. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24:7999–8008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pedrazzi M, Melloni E, Sparatore B (2010) Selective pro-inflammatory activation of astrocytes by high mobility group box 1 protein signaling new insights to neuroimmune biology. Elsevier, pp 53–72

  61. Anzilotti S, Giampà C, Laurenti D, Perrone L, Bernardi G, Melone MA, Fusco FR (2012) Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington’s disease. Brain Res Bull 87:350–358

    Article  CAS  PubMed  Google Scholar 

  62. Shi D, Chang JW, Choi J, Connor B, O'carroll SJ, Nicholson LF, Kim JH (2018) Receptor for advanced glycation end products (RAGE) is expressed predominantly in medium spiny neurons of tgHD rat striatum. Neuroscience 380:146–151

    Article  CAS  PubMed  Google Scholar 

  63. Griffioen K, Mattson MP, Okun E (2018) Deficiency of toll-like receptors 2, 3 or 4 extends life expectancy in Huntington’s disease mice. Heliyon 4:e00508

    Article  PubMed  PubMed Central  Google Scholar 

  64. El-Abhar H, El Fattah MAA, Wadie W, El-Tanbouly DM (2018) Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 13:e0203837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35

    Article  CAS  PubMed  Google Scholar 

  66. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, Shimizu J, Shimizu S, Tamura T, Si M (2015) HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO molecular medicine 7:78–101

    Article  CAS  PubMed  Google Scholar 

  67. Lee L-C, Chen C-M, Wang P-R, Su M-T, Lee-Chen G-J, Chang C-Y (2014) Role of high mobility group box 1 (HMGB1) in SCA17 pathogenesis. PLoS One 9:e115809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tang D, Kang R, Livesey KM, Cheh C-W, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalathur RKR, Giner-Lamia J, Machado S, Barata T, Ayasolla KR, Futschik ME (2015) The unfolded protein response and its potential role in Huntington’s disease elucidated by a systems biology approach. F1000Research 4

  70. Matus S, Lisbona F, Torres M, León C, Thielen P, Hetz C (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med 8:157–172

    Article  CAS  PubMed  Google Scholar 

  71. Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, Bianchi ME (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22:276–280

    Article  CAS  PubMed  Google Scholar 

  72. Itou J, Taniguchi N, Oishi I, Kawakami H, Lotz M, Kawakami Y (2011) HMGB factors are required for posterior digit development through integrating signaling pathway activities. Developmental dynamics : an official publication of the American Association of Anatomists 240:1151–1162

    Article  CAS  Google Scholar 

  73. Lin Q, Fang J, Fang D, Li B, Zhou H, Su SB (2011) Production of recombinant human HMGB1 and anti-HMGB1 rabbit serum. Int Immunopharmacol 11:646–651

    Article  CAS  PubMed  Google Scholar 

  74. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  CAS  PubMed  Google Scholar 

  75. Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T, Mysore JS, Gusella JF, MacDonald ME, Myers RH (2012) Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79:1708–1715

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Yam Nath Paudel would like to acknowledge Monash University Malaysia for awarding with HDR scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Piperi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulou, E., Paudel, Y.N. & Piperi, C. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington’s disease. J Mol Med 98, 325–334 (2020). https://doi.org/10.1007/s00109-020-01885-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01885-z

Keywords

Navigation