Skip to main content

Huntington’s Disease: Molecular Pathogenesis and New Therapeutic Perspectives

  • Chapter
  • First Online:
Chorea

Abstract

Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disorder with a clinical spectrum that includes chorea, incoordination, cognitive decline, and behavioral difficulties. The underlying genetic defect responsible for the disease is the expansion of a CAG repeat in the huntingtin (HTT) gene. This repeat is unstable and its length is inversely correlated with the age at onset of the disease. Despite its widespread distribution, mutant HTT causes neurodegeneration, which occurs preferentially in the striatum and deeper layers of the cortex. Mechanisms implicated in HD include those relevant to DNA repair, transcriptional and translational modulation of expanded trinucleotide repeats (including somatic expansion), mitochondria and energy homeostasis, vesicular trafficking dynamics, oligomerization of mHTT (chaperone biology), autophagy, epigenetic mechanisms, and synaptic signaling. Notably, not all the effects of mutant HTT are cell autonomous. The present review focuses on the molecular pathogenesis of HD and the current state of therapeutic development for the treatment of HD. We review the preclinical and clinical development molecular therapies targeting HTT expression and the modulation of biological mechanisms thought to contribute to disease pathogenesis via novel therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev. 2010;90(3):905–81.

    CAS  PubMed  Google Scholar 

  2. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83.

    Google Scholar 

  3. Langbehn DR, Hayden MR, Paulsen JS, PREDICT-HD Investigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):397–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84.

    CAS  PubMed  Google Scholar 

  5. Sanberg PR, Fibiger HC, Mark RF. Body weight and dietary factors in Huntington’s disease patients compared with matched controls. Med J Aust. 1981;1(8):407–9.

    CAS  PubMed  Google Scholar 

  6. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC, Predict-HD Investigators of the Huntington Study Group. Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry. 2007;62(12):1341–6.

    PubMed  Google Scholar 

  7. Fischbeck KH. Polyglutamine expansion neurodegenerative disease. Brain Res Bull. 2001;56(3–4):161–3.

    CAS  PubMed  Google Scholar 

  8. Margolis RL, Ross CA. Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med. 2001;7(11):479–82.

    CAS  PubMed  Google Scholar 

  9. Hult S, Schultz K, Soylu R, Petersén A. Hypothalamic and neuroendocrine changes in Huntington’s disease. Curr Drug Targets. 2010;11(10):1237–49.

    CAS  PubMed  Google Scholar 

  10. Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci. 2013;14(10):708–21.

    CAS  PubMed  Google Scholar 

  11. Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet. 1995;11(2):115–6.

    CAS  PubMed  Google Scholar 

  12. Wang Z-M, Lashuel HA. Discovery of a novel aggregation domain in the huntingtin protein: implications for the mechanisms of Htt aggregation and toxicity. Angew Chem Int Ed Engl. 2013;52(2):562–7.

    CAS  PubMed  Google Scholar 

  13. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, et al. Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis. 1998;4(6):387–97.

    CAS  PubMed  Google Scholar 

  14. Martín-Aparicio E, Yamamoto A, Hernández F, Hen R, Avila J, Lucas JJ. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington’s disease. J Neurosci. 2001;21(22):8772–81.

    PubMed  Google Scholar 

  15. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell. 2000;101(1):57–66.

    CAS  PubMed  Google Scholar 

  16. Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J, et al. Expression of normal and mutant huntingtin in the developing brain. J Neurosci. 1996;16(17):5523–35.

    CAS  PubMed  Google Scholar 

  17. Shelbourne PF, Keller-McGandy C, Bi WL, Yoon S-R, Dubeau L, Veitch NJ, et al. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet. 2007;16(10):1133–42.

    CAS  PubMed  Google Scholar 

  18. Kennedy L, Evans E, Chen C-M, Craven L, Detloff PJ, Ennis M, et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet. 2003;12(24):3359–67.

    CAS  PubMed  Google Scholar 

  19. Ishiguro H, Yamada K, Sawada H, Nishii K, Ichino N, Sawada M, et al. Age-dependent and tissue-specific CAG repeat instability occurs in mouse knock-in for a mutant Huntington’s disease gene. J Neurosci Res. 2001;65(4):289–97.

    CAS  PubMed  Google Scholar 

  20. Dragileva E, Hendricks A, Teed A, Gillis T, Lopez ET, Friedberg EC, et al. Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol Dis. 2009;33(1):37–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Wheeler VC, Lebel L-A, Vrbanac V, Teed A, te Riele H, MacDonald ME. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum Mol Genet. 2003;12(3):273–81.

    CAS  PubMed  Google Scholar 

  22. Swami M, Hendricks AE, Gillis T, Massood T, Mysore J, Myers RH, et al. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet. 2009;18(16):3039–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Watase K, Venken KJT, Sun Y, Orr HT, Zoghbi HY. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Hum Mol Genet. 2003;12(21):2789–95.

    CAS  PubMed  Google Scholar 

  24. Gray M, Shirasaki DI, Cepeda C, André VM, Wilburn B, Lu X-H, et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci. 2008;28(24):6182–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol. 2006;172(4):605–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Sahlender DA, Roberts RC, Arden SD, Spudich G, Taylor MJ, Luzio JP, et al. Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol. 2005;169(2):285–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur ELF. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci U S A. 2007;104(24):10045–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Caviston JP, Holzbaur ELF. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol. 2009;19(4):147–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Colin E, Zala D, Liot G, Rangone H, Borrell-Pagès M, Li X-J, et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J. 2008;27(15):2124–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Morfini G. Axonal transport. In: Siegel GJ, Albers RW, Brady ST, Price DL, editors. Basic neurochemistry: molecular, cellular, and medical aspects. San Diego: Elsevier Academic Press; 2006. p. 485–502.

    Google Scholar 

  31. Roy S, Zhang B, Lee VM-Y, Trojanowski JQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. 2005;109(1):5–13.

    PubMed  Google Scholar 

  32. Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem. 2010;113(5):1073–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci. 2006;9(7):907–16.

    CAS  PubMed  Google Scholar 

  34. Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron. 2003;40(1):41–52.

    CAS  PubMed  Google Scholar 

  35. Her L-S, Goldstein LSB. Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin. J Neurosci. 2008;28(50):13662–72.

    CAS  PubMed  Google Scholar 

  36. Sinadinos C, Burbidge-King T, Soh D, Thompson LM, Marsh JL, Wyttenbach A, et al. Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons. Neurobiol Dis. 2009;34(2):389–95.

    CAS  PubMed  Google Scholar 

  37. Morfini GA, You Y-M, Pollema SL, Kaminska A, Liu K, Yoshioka K, et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci. 2009;12(7):864–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. DiProspero NA, Chen E-Y, Charles V, Plomann M, Kordower JH, Tagle DA. Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol. 2004;33(5):517–33.

    PubMed  Google Scholar 

  39. Apostol BL, Illes K, Pallos J, Bodai L, Wu J, Strand A, et al. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum Mol Genet. 2006;15(2):273–85.

    CAS  PubMed  Google Scholar 

  40. Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, et al. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci. 2005;21(2):363–77.

    PubMed  Google Scholar 

  41. Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997;389(6653):865–70.

    CAS  PubMed  Google Scholar 

  42. Merienne K, Helmlinger D, Perkin GR, Devys D, Trottier Y. Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem. 2003;278(19):16957–67.

    CAS  PubMed  Google Scholar 

  43. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F, MacDonald ME. Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet. 2000;9(19):2789–97.

    CAS  PubMed  Google Scholar 

  45. Grondin R, Kaytor MD, Ai Y, Nelson PT, Thakker DR, Heisel J, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain. 2012;135(Pt 4):1197–209.

    PubMed Central  PubMed  Google Scholar 

  46. Woda JM, Calzonetti T, Hilditch-Maguire P, Duyao MP, Conlon RA, MacDonald ME. Inactivation of the Huntington’s disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo. BMC Dev Biol. 2005;5:17.

    PubMed Central  PubMed  Google Scholar 

  47. Sah DWY, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest. 2011;121(2):500–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Stiles DK, Zhang Z, Ge P, Nelson B, Grondin R, Ai Y, et al. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol. 2012;233(1):463–71.

    CAS  PubMed  Google Scholar 

  49. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington’s disease. Proc Natl Acad Sci U S A. 2013;110(6):2366–7.

    Google Scholar 

  50. Galka-Marciniak P, Urbanek MO, Krzyzosiak WJ. Triplet repeats in transcripts: structural insights into RNA toxicity. Biol Chem. 2012;393(11):1299–315.

    CAS  PubMed  Google Scholar 

  51. Li L-B, Yu Z, Teng X, Bonini NM. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature. 2008;453(7198):1107–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Brandt J, Folstein SE, Wong DF, Links J, Dannals RF, McDonnell-Sill A, et al. D2 receptors in Huntington’s disease: positron emission tomography findings and clinical correlates. J Neuropsychiatry Clin Neurosci. 1990;2(1):20–7.

    CAS  PubMed  Google Scholar 

  53. André VM, Cepeda C, Levine MS. Dopamine and glutamate in Huntington’s disease: a balancing act. CNS Neurosci Ther. 2010;16(3):163–78.

    PubMed Central  PubMed  Google Scholar 

  54. Van Laere K, Casteels C, Dhollander I, Goffin K, Grachev I, Bormans G, et al. Widespread decrease of type 1 cannabinoid receptor availability in Huntington disease in vivo. J Nucl Med. 2010;51(9):1413–7.

    PubMed  Google Scholar 

  55. Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti FS, Fusco FR. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One. 2010;5(10):e13417.

    PubMed Central  PubMed  Google Scholar 

  56. Sadri-Vakili G, Bouzou B, Benn CL, Kim M-O, Chawla P, Overland RP, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet. 2007;16(11):1293–306.

    CAS  PubMed  Google Scholar 

  57. Sugars KL, Brown R, Cook LJ, Swartz J, Rubinsztein DC. Decreased cAMP response element-mediated transcription: an early event in exon 1 and full-length cell models of Huntington’s disease that contributes to polyglutamine pathogenesis. J Biol Chem. 2004;279(6):4988–99.

    CAS  PubMed  Google Scholar 

  58. Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP, et al. Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J Neurosci. 2010;30(1):316–24.

    CAS  PubMed  Google Scholar 

  59. Hunter A, Bordelon Y, Cook I, Leuchter A. QEEG measures in Huntington’s disease: a pilot study. PLoS Curr. 2010;2, RRN1192.

    PubMed Central  PubMed  Google Scholar 

  60. Eidelberg D, Surmeier DJ. Brain networks in Huntington disease. J Clin Invest. 2011;121(2):484–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Gray MA, Egan GF, Ando A, Churchyard A, Chua P, Stout JC, et al. Prefrontal activity in Huntington’s disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol. 2013;239:218–28.

    CAS  PubMed  Google Scholar 

  62. Wolf RC, Thomann PA, Thomann AK, Vasic N, Wolf ND, Landwehrmeyer GB, et al. Brain structure in preclinical Huntington’s disease: a multi-method approach. Neurodegener Dis. 2013;12(1):13–22.

    CAS  PubMed  Google Scholar 

  63. Qin Z-H, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR, et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci. 2004;24(1):269–81.

    CAS  PubMed  Google Scholar 

  64. Heikkinen T, Lehtimäki K, Vartiainen N, Puoliväli J, Hendricks SJ, Glaser JR, et al. Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One. 2012;7(12):e50717.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol. 2012;46(2):393–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol. 2012;46(2):430–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Cepeda C, Galvan L, Holley SM, Rao SP, André VM, Botelho EP, et al. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J Neurosci. 2013;33(17):7393–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Horne EA, Coy J, Swinney K, Fung S, Cherry AET, Marrs WR, et al. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur J Neurosci. 2013;37(3):429–40.

    PubMed Central  PubMed  Google Scholar 

  69. Vlamings R, Benazzouz A, Chetrit J, Janssen MLF, Kozan R, Visser-Vandewalle V, et al. Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington’s disease rats. Neurobiol Dis. 2012;48(3):488–94.

    PubMed  Google Scholar 

  70. Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 2007;30(10):545–53.

    CAS  PubMed  Google Scholar 

  71. Frank S. Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat. 2010;6:657–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.

    CAS  PubMed  Google Scholar 

  73. Chen JJ, Ondo WG, Dashtipour K, Swope DM. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.

    PubMed  Google Scholar 

  74. Lundin A, Dietrichs E, Haghighi S, Göller M-L, Heiberg A, Loutfi G, et al. Efficacy and safety of the dopaminergic stabilizer Pridopidine (ACR16) in patients with Huntington’s disease. Clin Neuropharmacol. 2010;33(5):260–4.

    CAS  PubMed  Google Scholar 

  75. Dyhring T, Nielsen EØ, Sonesson C, Pettersson F, Karlsson J, Svensson P, et al. The dopaminergic stabilizers pridopidine (ACR16) and (-)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties. Eur J Pharmacol. 2010;628(1–3):19–26.

    CAS  PubMed  Google Scholar 

  76. Kara E, Lin H, Svensson K, Johansson AM, Strange PG. Analysis of the actions of the novel dopamine receptor-directed compounds (S)-OSU6162 and ACR16 at the D2 dopamine receptor. Br J Pharmacol. 2010;161(6):1343–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ponten H, Kullingsjö J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, et al. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol. 2010;644(1–3):88–95.

    CAS  PubMed  Google Scholar 

  78. Rung JP, Rung E, Helgeson L, Johansson AM, Svensson K, Carlsson A, et al. Effects of (-)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization. J Neural Transm (Vienna Austria 1996). 2008;115(6):899–908.

    CAS  Google Scholar 

  79. De Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, et al. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011;10(12):1049–57.

    PubMed  Google Scholar 

  80. Squitieri F, Landwehrmeyer B, Reilmann R, Rosser A, de Yebenes JG, Prang A, et al. One-year safety and tolerability profile of pridopidine in patients with Huntington disease. Neurology. 2013;80(12):1086–94.

    CAS  PubMed  Google Scholar 

  81. Munoz-Sanjuan I, Bates GP. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invest. 2011;121(2):476–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Venuto CS, McGarry A, Ma Q, Kieburtz K. Pharmacologic approaches to the treatment of Huntington’s disease. Mov Disord. 2012;27(1):31–41.

    CAS  PubMed  Google Scholar 

  83. Hassel B, Tessler S, Faull RLM, Emson PC. Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res. 2008;33(2):232–7.

    CAS  PubMed  Google Scholar 

  84. Miller BR, Dorner JL, Bunner KD, Gaither TW, Klein EL, Barton SJ, et al. Up-regulation of GLT1 reverses the deficit in cortically evoked striatal ascorbate efflux in the R6/2 mouse model of Huntington’s disease. J Neurochem. 2012;121(4):629–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19(15):3053–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sari Y, Prieto AL, Barton SJ, Miller BR, Rebec GV. Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. J Biomed Sci. 2010;17:62.

    PubMed Central  PubMed  Google Scholar 

  87. Landwehrmeyer GB, Dubois B, de Yébenes JG, Kremer B, Gaus W, Kraus PH, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol. 2007;62(3):262–72.

    CAS  PubMed  Google Scholar 

  88. Arregui L, Benítez JA, Razgado LF, Vergara P, Segovia J. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol. 2011;31(8):1229–43.

    CAS  PubMed  Google Scholar 

  89. Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, et al. Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol. 2013;169(4):909–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP. The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington’s disease mice. Neurobiol Dis. 2012;47(1):75–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Schiefer J, Sprünken A, Puls C, Lüesse H-G, Milkereit A, Milkereit E, et al. The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res. 2004;1019(1–2):246–54.

    CAS  PubMed  Google Scholar 

  92. Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, et al. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington’s disease mice. Neurobiol Dis. 2012;48(1):40–51.

    CAS  PubMed  Google Scholar 

  93. Cachope R. Functional diversity on synaptic plasticity mediated by endocannabinoids. Philos Trans R Soc Lond B Biol Sci. 2012;367(1607):3242–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Skaper SD, Di Marzo V. Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philos Trans R Soc Lond B Biol Sci. 2012;367(1607):3193–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Chiodi V, Uchigashima M, Beggiato S, Ferrante A, Armida M, Martire A, et al. Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington’s disease. Neurobiol Dis. 2012;45(3):983–91.

    CAS  PubMed  Google Scholar 

  96. Bari M, Battista N, Valenza M, Mastrangelo N, Malaponti M, Catanzaro G, et al. In vitro and in vivo models of Huntington’s disease show alterations in the endocannabinoid system. FEBS J. 2013;280(14):3376–88.

    CAS  PubMed  Google Scholar 

  97. Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol. 1994;36(4):577–84.

    CAS  PubMed  Google Scholar 

  98. Allen KL, Waldvogel HJ, Glass M, Faull RLM. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington’s disease. J Chem Neuroanat. 2009;37(4):266–81.

    CAS  PubMed  Google Scholar 

  99. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience. 2000;97(3):505–19.

    CAS  PubMed  Google Scholar 

  100. Glass M, Faull RL, Dragunow M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience. 1993;56(3):523–7.

    CAS  PubMed  Google Scholar 

  101. Lastres-Becker I, Berrendero F, Lucas JJ, Martín-Aparicio E, Yamamoto A, Ramos JA, et al. Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res. 2002;929(2):236–42.

    CAS  PubMed  Google Scholar 

  102. Denovan-Wright EM, Robertson HA. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience. 2000;98(4):705–13.

    CAS  PubMed  Google Scholar 

  103. Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24(15):2254–9.

    PubMed  Google Scholar 

  104. Chou S-Y, Lee Y-C, Chen H-M, Chiang M-C, Lai H-L, Chang H-H, et al. CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem. 2005;93(2):310–20.

    CAS  PubMed  Google Scholar 

  105. Dowie MJ, Bradshaw HB, Howard ML, Nicholson LFB, Faull RLM, Hannan AJ, et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience. 2009;163(1):456–65.

    CAS  PubMed  Google Scholar 

  106. Orru M, Bakešová J, Brugarolas M, Quiroz C, Beaumont V, Goldberg SR, et al. Striatal pre- and postsynaptic profile of adenosine A(2A) receptor antagonists. PLoS One. 2011;6(1):e16088.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis. 2006;23(1):44–53.

    CAS  PubMed  Google Scholar 

  108. Popoli P, Blum D, Domenici MR, Burnouf S, Chern Y. A critical evaluation of adenosine A2A receptors as potentially «druggable» targets in Huntington’s disease. Curr Pharm Des. 2008;14(15):1500–11.

    CAS  PubMed  Google Scholar 

  109. Orrú M, Zanoveli JM, Quiroz C, Nguyen HP, Guitart X, Ferré S. Functional changes in postsynaptic adenosine A(2A) receptors during early stages of a rat model of Huntington disease. Exp Neurol. 2011;232(1):76–80.

    PubMed Central  PubMed  Google Scholar 

  110. Domenici MR, Scattoni ML, Martire A, Lastoria G, Potenza RL, Borioni A, et al. Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist Sch 58261 in R6/2 Huntington’s disease mice. Neurobiol Dis. 2007;28(2):197–205.

    CAS  PubMed  Google Scholar 

  111. Ferrante A, Martire A, Armida M, Chiodi V, Pézzola A, Potenza RL, et al. Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington’s disease mice. Brain Res. 2010;1323:184–91.

    CAS  PubMed  Google Scholar 

  112. Martire A, Ferrante A, Potenza RL, Armida M, Ferretti R, Pézzola A, et al. Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington’s disease mice. Neurobiol Dis. 2010;37(1):99–105.

    CAS  PubMed  Google Scholar 

  113. Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M, Japanese Istradefylline Study Group. Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord. 2010;25(10):1437–43.

    PubMed  Google Scholar 

  114. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9.

    CAS  PubMed  Google Scholar 

  115. Hebb ALO, Robertson HA. Role of phosphodiesterases in neurological and psychiatric disease. Curr Opin Pharmacol. 2007;7(1):86–92.

    CAS  PubMed  Google Scholar 

  116. Rose GM, Hopper A, De Vivo M, Tehim A. Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des. 2005;11(26):3329–34.

    CAS  PubMed  Google Scholar 

  117. Jeon YH, Heo Y-S, Kim CM, Hyun Y-L, Lee TG, Ro S, et al. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci. 2005;62(11):1198–220.

    CAS  PubMed  Google Scholar 

  118. Giampà C, DeMarch Z, D’Angelo V, Morello M, Martorana A, Sancesario G, et al. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington’s disease. Eur J Neurosci. 2006;23(1):11–20.

    PubMed  Google Scholar 

  119. Giampà C, Patassini S, Borreca A, Laurenti D, Marullo F, Bernardi G, et al. Phosphodiesterase 10 inhibition reduces striatal excitotoxicity in the quinolinic acid model of Huntington’s disease. Neurobiol Dis. 2009;34(3):450–6.

    PubMed  Google Scholar 

  120. Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet. 2003;12(5):497–508.

    CAS  PubMed  Google Scholar 

  121. Kleiman RJ, Kimmel LH, Bove SE, Lanz TA, Harms JF, Romegialli A, et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther. 2011;336(1):64–76.

    CAS  PubMed  Google Scholar 

  122. Obrietan K, Hoyt KR. CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J Neurosci. 2004;24(4):791–6.

    CAS  PubMed  Google Scholar 

  123. Sathasivam K, Lane A, Legleiter J, Warley A, Woodman B, Finkbeiner S, et al. Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington’s disease. Hum Mol Genet. 2010;19(1):65–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Giralt A, Saavedra A, Carretón O, Xifró X, Alberch J, Pérez-Navarro E. Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum Mol Genet. 2011;20(21):4232–47.

    CAS  PubMed  Google Scholar 

  125. Ahn HS, Bercovici A, Boykow G, Bronnenkant A, Chackalamannil S, Chow J, et al. Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. J Med Chem. 1997;40(14):2196–210.

    CAS  PubMed  Google Scholar 

  126. DeMarch Z, Giampà C, Patassini S, Bernardi G, Fusco FR. Beneficial effects of rolipram in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis. 2008;30(3):375–87.

    CAS  PubMed  Google Scholar 

  127. Giampà C, Middei S, Patassini S, Borreca A, Marullo F, Laurenti D, et al. Phosphodiesterase type IV inhibition prevents sequestration of CREB binding protein, protects striatal parvalbumin interneurons and rescues motor deficits in the R6/2 mouse model of Huntington’s disease. Eur J Neurosci. 2009;29(5):902–10.

    PubMed  Google Scholar 

  128. DeMarch Z, Giampà C, Patassini S, Martorana A, Bernardi G, Fusco FR. Beneficial effects of rolipram in a quinolinic acid model of striatal excitotoxicity. Neurobiol Dis. 2007;25(2):266–73.

    CAS  PubMed  Google Scholar 

  129. Chandrasekaran A, Toh KY, Low SH, Tay SKH, Brenner S, Goh DLM. Identification and characterization of novel mouse PDE4D isoforms: molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal. 2008;20(1):139–53.

    CAS  PubMed  Google Scholar 

  130. Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest. 2013;123(3):973–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Iona S, Cuomo M, Bushnik T, Naro F, Sette C, Hess M, et al. Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol. 1998;53(1):23–32.

    CAS  PubMed  Google Scholar 

  132. Threlfell S, Sammut S, Menniti FS, Schmidt CJ, West AR. Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther. 2009;328(3):785–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Kotera J, Sasaki T, Kobayashi T, Fujishige K, Yamashita Y, Omori K. Subcellular localization of cyclic nucleotide phosphodiesterase type 10A variants, and alteration of the localization by cAMP-dependent protein kinase-dependent phosphorylation. J Biol Chem. 2004;279(6):4366–75.

    CAS  PubMed  Google Scholar 

  134. Sotty F, Montezinho LP, Steiniger-Brach B, Nielsen J. Phosphodiesterase 10A inhibition modulates the sensitivity of the mesolimbic dopaminergic system to D-amphetamine: involvement of the D1-regulated feedback control of midbrain dopamine neurons. J Neurochem. 2009;109(3):766–75.

    CAS  PubMed  Google Scholar 

  135. Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 2003;985(2):113–26.

    CAS  PubMed  Google Scholar 

  136. Rodefer JS, Saland SK, Eckrich SJ. Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology. 2012;62(3):1182–90.

    CAS  PubMed  Google Scholar 

  137. Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl). 2008;196(4):643–8.

    CAS  Google Scholar 

  138. Rutten K, Lieben C, Smits L, Blokland A. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl). 2007;192(2):275–82.

    CAS  Google Scholar 

  139. Arenas E, Akerud P, Wong V, Boylan C, Persson H, Lindsay RM, et al. Effects of BDNF and NT-4/5 on striatonigral neuropeptides or nigral GABA neurons in vivo. Eur J Neurosci. 1996;8(8):1707–17.

    CAS  PubMed  Google Scholar 

  140. Besusso D, Geibel M, Kramer D, Schneider T, Pendolino V, Picconi B, et al. BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat Commun. 2013;4:2031.

    PubMed Central  PubMed  Google Scholar 

  141. Brito V, Puigdellívol M, Giralt A, del Toro D, Alberch J, Ginés S. Imbalance of p75(NTR)/TrkB protein expression in Huntington’s disease: implication for neuroprotective therapies. Cell Death Dis. 2013;4:e595.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol Dis. 2010;39(1):28–39.

    CAS  PubMed  Google Scholar 

  143. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martín-Ibañez R, Muñoz MT, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci. 2004;24(35):7727–39.

    CAS  PubMed  Google Scholar 

  144. Conforti P, Mas Monteys A, Zuccato C, Buckley NJ, Davidson B, Cattaneo E. In vivo delivery of DN:REST improves transcriptional changes of REST-regulated genes in HD mice. Gene Ther. 2013;20(6):678–85.

    CAS  PubMed  Google Scholar 

  145. Conforti P, Zuccato C, Gaudenzi G, Ieraci A, Camnasio S, Buckley NJ, et al. Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington’s disease models. J Neurochem. 2013;127(1):22–35.

    CAS  PubMed  Google Scholar 

  146. Giampà C, Montagna E, Dato C, Melone MAB, Bernardi G, Fusco FR. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One. 2013;8(5):e64037.

    PubMed Central  PubMed  Google Scholar 

  147. Giralt A, Carretón O, Lao-Peregrin C, Martín ED, Alberch J. Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener. 2011;6(1):71.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Goggi J, Pullar IA, Carney SL, Bradford HF. Modulation of neurotransmitter release induced by brain-derived neurotrophic factor in rat brain striatal slices in vitro. Brain Res. 2002;941(1–2):34–42.

    CAS  PubMed  Google Scholar 

  149. Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci. 1999;19(13):5409–19.

    CAS  PubMed  Google Scholar 

  150. Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, et al. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet. 2013;22(12):2462–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Jiao Y, Zhang Z, Zhang C, Wang X, Sakata K, Lu B, et al. A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo. Proc Natl Acad Sci U S A. 2011;108(29):12131–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther. 2004;9(5):682–8.

    CAS  PubMed  Google Scholar 

  153. Liot G, Zala D, Pla P, Mottet G, Piel M, Saudou F. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci. 2013;33(15):6298–309.

    CAS  PubMed  Google Scholar 

  154. Martire A, Pepponi R, Domenici MR, Ferrante A, Chiodi V, Popoli P. BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A(2A) receptor is involved. J Neurochem. 2013;125(2):225–35.

    CAS  Google Scholar 

  155. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest. 2010;120(5):1774–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Soldati C, Bithell A, Conforti P, Cattaneo E, Buckley NJ. Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington’s disease. J Neurochem. 2011;116(3):415–25.

    CAS  PubMed  Google Scholar 

  157. Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci. 2010;30(44):14708–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet. 2008;17(24):3837–46.

    CAS  PubMed  Google Scholar 

  159. Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, et al. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One. 2011;6(8):e22966.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Perreault M, Feng G, Will S, Gareski T, Kubasiak D, Marquette K, et al. Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates. PLoS One. 2013;8(5):e62616.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Tsao D, Thomsen HK, Chou J, Stratton J, Hagen M, Loo C, et al. TrkB agonists ameliorate obesity and associated metabolic conditions in mice. Endocrinology. 2008;149(3):1038–48.

    CAS  PubMed  Google Scholar 

  162. Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight. Front Neurosci. 2013;7:37.

    PubMed Central  PubMed  Google Scholar 

  163. Waterhouse EG, Xu B. The skinny on brain-derived neurotrophic factor: evidence from animal models to GWAS. J Mol Med (Berl). 2013;91(11):1241–7.

    CAS  Google Scholar 

  164. Fletcher JM, Hughes RA. Modified low molecular weight cyclic peptides as mimetics of BDNF with improved potency, proteolytic stability and transmembrane passage in vitro. Bioorg Med Chem. 2009;17(7):2695–702.

    CAS  PubMed  Google Scholar 

  165. Marongiu D, Imbrosci B, Mittmann T. Modulatory effects of the novel TrkB receptor agonist 7,8-dihydroxyflavone on synaptic transmission and intrinsic neuronal excitability in mouse visual cortex in vitro. Eur J Pharmacol. 2013;709(1–3):64–71.

    CAS  PubMed  Google Scholar 

  166. O’Leary PD, Hughes RA. Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem. 2003;278(28):25738–44.

    PubMed  Google Scholar 

  167. Simmons DA, Belichenko NP, Yang T, Condon C, Monbureau M, Shamloo M, et al. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J Neurosci. 2013;33(48):18712–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Mochel F, Durant B, Meng X, O’Callaghan J, Yu H, Brouillet E, et al. Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem. 2012;287(2):1361–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Mochel F, Haller RG. Energy deficit in Huntington disease: why it matters. J Clin Invest. 2011;121(2):493–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Gellerich FN, Gizatullina Z, Nguyen HP, Trumbeckaite S, Vielhaber S, Seppet E, et al. Impaired regulation of brain mitochondria by extramitochondrial Ca2+ in transgenic Huntington disease rats. J Biol Chem. 2008;283(45):30715–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Reynolds NC, Prost RW, Mark LP, Joseph SA. MR-spectroscopic findings in juvenile-onset Huntington’s disease. Mov Disord. 2008;23(13):1931–5.

    PubMed  Google Scholar 

  172. Mochel F, Duteil S, Marelli C, Jauffret C, Barles A, Holm J, et al. Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington’s disease. Eur J Hum Genet. 2010;18(9):1057–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Tabrizi SJ, Blamire AM, Manners DN, Rajagopalan B, Styles P, Schapira AHV, et al. Creatine therapy for Huntington’s disease: clinical and MRS findings in a 1-year pilot study. Neurology. 2003;61(1):141–2.

    CAS  PubMed  Google Scholar 

  174. Van den Bogaard SJA, Dumas EM, Teeuwisse WM, Kan HE, Webb A, Roos RAC, et al. Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism. J Neurol. 2011;258(12):2230–9.

    PubMed Central  PubMed  Google Scholar 

  175. Ciammola A, Sassone J, Sciacco M, Mencacci NE, Ripolone M, Bizzi C, et al. Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov Disord. 2011;26(1):130–7.

    PubMed Central  PubMed  Google Scholar 

  176. Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology. 1998;50(5):1357–65.

    CAS  PubMed  Google Scholar 

  177. Lin Y-S, Chen C-M, Soong B, Wu Y-R, Chen H-M, Yeh W-Y, et al. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest. 2011;121(4):1519–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA. Impaired brain creatine kinase activity in Huntington’s disease. Neurodegener Dis. 2011;8(4):194–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Kim J, Amante DJ, Moody JP, Edgerly CK, Bordiuk OL, Smith K, et al. Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta. 2010;1802(7–8):673–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Hickey MA, Zhu C, Medvedeva V, Franich NR, Levine MS, Chesselet M-F. Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington’s disease. Mol Cell Neurosci. 2012;49(2):149–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Menalled LB, Patry M, Ragland N, Lowden PAS, Goodman J, Minnich J, et al. Comprehensive behavioral testing in the R6/2 mouse model of Huntington’s disease shows no benefit from CoQ10 or minocycline. PLoS One. 2010;5(3):e9793.

    PubMed Central  PubMed  Google Scholar 

  182. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, et al. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem. 2009;109(5):1427–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Van Raamsdonk JM, Pearson J, Rogers DA, Lu G, Barakauskas VE, Barr AM, et al. Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease. Exp Neurol. 2005;196(2):266–72.

    PubMed  Google Scholar 

  184. Borrell-Pagès M, Canals JM, Cordelières FP, Parker JA, Pineda JR, Grange G, et al. Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest. 2006;116(5):1410–24.

    PubMed Central  PubMed  Google Scholar 

  185. Spina D. PDE4 inhibitors: current status. Br J Pharmacol. 2008;155(3):308–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Puri BK, Leavitt BR, Hayden MR, Ross CA, Rosenblatt A, Greenamyre JT, et al. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology. 2005;65(2):286–92.

    CAS  PubMed  Google Scholar 

  187. Puri BK, Bydder GM, Counsell SJ, Corridan BJ, Richardson AJ, Hajnal JV, et al. MRI and neuropsychological improvement in Huntington disease following ethyl-EPA treatment. Neuroreport. 2002;13(1):123–6.

    PubMed  Google Scholar 

  188. Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology. 2006;66(2):250–2.

    CAS  PubMed  Google Scholar 

  189. Verbessem P, Lemiere J, Eijnde BO, Swinnen S, Vanhees L, Van Leemputte M, et al. Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology. 2003;61(7):925–30.

    CAS  PubMed  Google Scholar 

  190. Dubinsky R, Gray C. CYTE-I-HD: phase I dose finding and tolerability study of cysteamine (Cystagon) in Huntington’s disease. Mov Disord. 2006;21(4):530–3.

    PubMed  Google Scholar 

  191. Huntington Study Group Pre2CARE Investigators, Hyson HC, Kieburtz K, Shoulson I, McDermott M, Ravina B, et al. Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord. 2010;25(12):1924–8.

    PubMed  Google Scholar 

  192. Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, et al. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab. 2006;4(5):349–62.

    CAS  PubMed  Google Scholar 

  193. Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet. 2012;21(5):1124–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med. 2012;18(1):153–8.

    CAS  Google Scholar 

  195. Chaturvedi RK, Beal MF. Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci. 2013;55:101–14.

    CAS  PubMed  Google Scholar 

  196. Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, et al. Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet. 2009;18(16):3048–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, et al. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem. 2013;125(3):410–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2012;18(1):159–65.

    CAS  Google Scholar 

  199. Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol. 2010;225(1):74–84.

    CAS  PubMed  Google Scholar 

  200. Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451(7178):587–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J, Matalonga J, et al. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J Biol Chem. 2012;287(28):23489–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci. 2008;1147:61–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013;11(11):e1001717.

    PubMed Central  PubMed  Google Scholar 

  204. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100(4):2041–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Jia H, Kast RJ, Steffan JS, Thomas EA. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum Mol Genet. 2012;21(24):5280–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Jia H, Pallos J, Jacques V, Lau A, Tang B, Cooper A, et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis. 2012;46(2):351–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. McFarland KN, Das S, Sun TT, Leyfer D, Xia E, Sangrey GR, et al. Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington’s disease. PLoS One. 2012;7(7):e41423.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Quinti L, Chopra V, Rotili D, Valente S, Amore A, Franci G, et al. Evaluation of histone deacetylases as drug targets in Huntington’s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr. 2010;2. pii: RRN1172. doi: 10.1371/currents.RRN1172.

  209. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001;413(6857):739–43.

    CAS  PubMed  Google Scholar 

  210. Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci U S A. 2008;105(40):15564–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Benn CL, Butler R, Mariner L, Nixon J, Moffitt H, Mielcarek M, et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One. 2009;4(6):e5747.

    PubMed Central  PubMed  Google Scholar 

  212. Bobrowska A, Paganetti P, Matthias P, Bates GP. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLoS One. 2011;6(6):e20696.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Moumné L, Campbell K, Howland D, Ouyang Y, Bates GP. Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington’s disease. PLoS One. 2012;7(2):e31080.

    PubMed Central  PubMed  Google Scholar 

  214. Jovicic A, Zaldivar Jolissaint JF, Moser R, Mde Silva Santos F, Luthi-Carter R. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One. 2013;8(1):e54222.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Bürli RW, Luckhurst CA, Aziz O, Matthews KL, Yates D, Lyons KA, et al. Design, synthesis, and biological evaluation of potent and selective class IIa Histone Deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J Med Chem. 2013;56(24):9934–54.

    PubMed  Google Scholar 

  216. Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287(51):42444–52.

    PubMed Central  PubMed  Google Scholar 

  217. Shin BH, Lim Y, Oh HJ, Park SM, Lee S-K, Ahnn J, et al. Pharmacological activation of Sirt1 ameliorates polyglutamine-induced toxicity through the regulation of autophagy. PLoS One. 2013;8(6):e64953.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A. 2010;107(17):7927–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74(6):619–24.

    CAS  PubMed  Google Scholar 

  220. Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP, et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem. 2010;285(43):32695–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. La Spada AR. Finding a sirtuin truth in Huntington’s disease. Nat Med. 2012;18(1):24–6.

    PubMed  Google Scholar 

  222. Liebman SW, Meredith SC. Protein folding: sticky N17 speeds huntingtin pile-up. Nat Chem Biol. 2010;6(1):7–8. doi:10.1038/nchembio.279.

    CAS  PubMed  Google Scholar 

  223. Williamson TE, Vitalis A, Crick SL, Pappu RV. Modulation of polyglutamine conformations and dimer formation by the N-terminus of huntingtin. J Mol Biol. 2010;396(5):1295–309.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Muñoz-Sanjuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Perandones, C., Muñoz-Sanjuan, I. (2014). Huntington’s Disease: Molecular Pathogenesis and New Therapeutic Perspectives. In: Micheli, F., LeWitt, P. (eds) Chorea. Springer, London. https://doi.org/10.1007/978-1-4471-6455-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6455-5_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6454-8

  • Online ISBN: 978-1-4471-6455-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics