Skip to main content
Log in

Vascular remodeling in pulmonary hypertension

  • Review Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537

    Article  PubMed  Google Scholar 

  2. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54:S55–S66

    Article  PubMed  Google Scholar 

  3. Voelkel NF, Tuder RM (2000) Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J Clin Invest 106:733–738

    Article  PubMed  CAS  Google Scholar 

  4. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  PubMed  CAS  Google Scholar 

  5. Tuder RM (2009) Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med 30:376–385

    Article  PubMed  Google Scholar 

  6. Stenmark KR, Rabinovitch M (2010) Emerging therapies for the treatment of pulmonary hypertension. Pediatr Crit Care Med 11:S85–S90

    Article  PubMed  Google Scholar 

  7. Gan CT-J, Lankhaar J-W, Westerhof N, Marcus JT, Becker A, Twisk JWR, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–1912

    Article  PubMed  Google Scholar 

  8. Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD (2006) Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47:799–803

    Article  PubMed  Google Scholar 

  9. Vanderpool RR, Kim AR, Molthen R, Chesler NC (2011) Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function. J Appl Physiol 110:188–198

    Article  PubMed  Google Scholar 

  10. Hyvelin J-M, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185–191

    Article  PubMed  CAS  Google Scholar 

  11. Stenmark KR, McMurtry IF (2005) Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res 97:95–98

    Article  PubMed  CAS  Google Scholar 

  12. McMurtry IV, Abe K, Ota H, Fagan KA, Oka M (2010) Rho kinase-mediated vasoconstriction in pulmonary hypertension. Adv Exp Med Biol 661:299–308

    Article  PubMed  CAS  Google Scholar 

  13. Penaloza D, Arias-Stella J, Sime F, Recavarren S, Marticorena E (1964) The heart and pulmonary circulation in children at high altitudes: physiological, anatomical, and clinical observations. Pediatrics 34:568–582

    PubMed  CAS  Google Scholar 

  14. Rotta A, Canepa A, Hurtado A, Velasquez T, Chavez R (1956) Pulmonary circulation at sea level and at high altitudes. J Appl Physiol 9:328–336

    PubMed  Google Scholar 

  15. Pryor R, Weaver WF, Blount SG (1965) Electrocardiographic observation of 493 residents living at high altitude (10,150 feet). Am J Cardiol 16:494–499

    Article  PubMed  CAS  Google Scholar 

  16. Naeye RL (1961) Hypoxemia and pulmonary hypertension. A study of the pulmonary vasculature. Arch Pathol 71:447–452

    PubMed  CAS  Google Scholar 

  17. Naeye RL (1965) Children at high altitude: pulmonary and renal abnormalities. Circ Res 16:33–38

    Article  PubMed  CAS  Google Scholar 

  18. Arias-Stella J, Saldana M (1963) The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation 28:915–925

    Article  PubMed  CAS  Google Scholar 

  19. Heath D, Smith P, Rios Dalenz J, Williams D, Harris P (1981) Small pulmonary arteries in some natives of La Paz, Bolivia. Thorax 36:599–604

    Article  PubMed  CAS  Google Scholar 

  20. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, Rapmund G, Sun S, Janes C, Moore LG (1993) Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol 74:312–318

    PubMed  CAS  Google Scholar 

  21. Gupta ML, Rao KS, Anand IS, Banerjee AK, Boparai MS (1992) Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted? Am Rev Respir Dis 145:1201–1204

    Article  PubMed  CAS  Google Scholar 

  22. Wilkinson M, Langhorne CA, Heath D, Barer GR, Howard P (1988) A pathophysiological study of 10 cases of hypoxic cor pulmonale. Q J Med 66:65–85

    PubMed  CAS  Google Scholar 

  23. Barberà JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, Wiggs BR, Rodriguez-Roisin R (1994) Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:423–429

    PubMed  Google Scholar 

  24. Wright JL, Petty T, Thurlbeck WM (1992) Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: National Institutes of Health nocturnal oxygen therapy trial. Lung 170:109–124

    Article  PubMed  CAS  Google Scholar 

  25. Santos S, Peinado VI, Ramírez J, Melgosa T, Roca J, Rodriguez-Roisin R, Barberà JA (2002) Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J 19:632–638

    Article  PubMed  CAS  Google Scholar 

  26. Voelkel N, Mizuno S, Gomez-Arroyo J (2011) COPD/emphysema: the vascular story. Pulm Circ 3:320

    Article  Google Scholar 

  27. Glover GH, Newsom IE (1915) Brisket disease: dropsy of high altitudes. Colo Agric Exp Station 204:3–24

    Google Scholar 

  28. Rhodes J (2005) Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J Appl Physiol 98:1092–1100

    Article  PubMed  Google Scholar 

  29. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, Wilson H, Reeves JT (1987) Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol 62:821–830

    PubMed  CAS  Google Scholar 

  30. Rabinovitch M, Gamble WJ, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818–H827

    PubMed  CAS  Google Scholar 

  31. Rabinovitch M, Chesler N, Molthen RC (2007) Point:counterpoint: chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1449–1451

    Article  PubMed  Google Scholar 

  32. Hislop A, Reid L (1976) New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br J Exp Pathol 57:542–554

    PubMed  CAS  Google Scholar 

  33. Berg JT (2007) Chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1455

    Article  PubMed  Google Scholar 

  34. Mcloughlin P, Mcmurtry I (2007) Counterpoint: chronic hypoxia-induced pulmonary hypertension does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1451–1453, discussion 1453–1454

    Article  PubMed  CAS  Google Scholar 

  35. Howell K, Preston RJ, McLoughlin P (2003) Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol 547:133–145

    Article  PubMed  CAS  Google Scholar 

  36. Bauer NR, Moore TM, McMurtry IF (2007) Rodent models of PAH: are we there yet? Am J Physiol Lung Cell Mol Physiol 293:L580–L582

    Article  PubMed  CAS  Google Scholar 

  37. Paddenberg R, Stieger P, Von Lilien A-L, Faulhammer P, Goldenberg A, Tillmanns HH, Kummer W, Braun-Dullaeus RC (2007) Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice. Respir Res 8:15

    Article  PubMed  CAS  Google Scholar 

  38. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691

    Article  PubMed  CAS  Google Scholar 

  39. Jaenke RS, Alexander AF (1973) Fine structural alterations of bovine peripheral pulmonary arteries in hypoxia-induced hypertension. Am J Pathol 73:377–398

    PubMed  CAS  Google Scholar 

  40. Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y (2001) Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol 127:53–60

    Article  PubMed  CAS  Google Scholar 

  41. Sato K, Webb S, Tucker A, Rabinovitch M, O’Brien RF, McMurtry IF, Stelzner TJ (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis 145:793–797

    PubMed  CAS  Google Scholar 

  42. Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  PubMed  CAS  Google Scholar 

  43. Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754

    Article  PubMed  Google Scholar 

  44. Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, Good R, Stringer R, Jones P, Morrell NW, Jarai G et al (2012) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184:1171–1182

    Article  CAS  Google Scholar 

  45. Kay JM, Harris P, Heath D (1967) Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax 22:176–179

    Article  PubMed  CAS  Google Scholar 

  46. Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D et al (2012) A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 302:L977–L991

    Article  PubMed  CAS  Google Scholar 

  47. Meyrick B, Gamble W, Reid L (1980) Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol 239:H692–H702

    PubMed  CAS  Google Scholar 

  48. Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD (1996) The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 98:434–442

    Article  PubMed  CAS  Google Scholar 

  49. Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025

    PubMed  CAS  Google Scholar 

  50. Maclean MR, Dempsie Y (2010) The serotonin hypothesis of pulmonary hypertension revisited. Adv Exp Med Biol 661:309–322

    Article  PubMed  CAS  Google Scholar 

  51. MacLean MR, Alexander D, Stirrat A, Gallagher M, Douglas SA, Ohlstein EH, Morecroft I, Polland K (2000) Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. Br J Pharmacol 130:201–204

    Article  PubMed  CAS  Google Scholar 

  52. Eddahibi S, Fabre V, Boni C, Martres MP, Raffestin B, Hamon M, Adnot S (1999) Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res 84:329–336

    Article  PubMed  CAS  Google Scholar 

  53. White K, Dempsie Y, Nilsen M, Wright AF, Loughlin L, MacLean MR (2011) The serotonin transporter, gender, and 17β oestradiol in the development of pulmonary arterial hypertension. Cardiovasc Res 90:373–382

    Article  PubMed  CAS  Google Scholar 

  54. Lowery JW, de Caestecker MP (2010) BMP signaling in vascular development and disease. Cytokine Growth Factor Rev 21:287–298

    Article  PubMed  CAS  Google Scholar 

  55. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355

    Article  PubMed  CAS  Google Scholar 

  56. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744

    Article  PubMed  CAS  Google Scholar 

  57. Elliott CG (2005) Genetics of pulmonary arterial hypertension: current and future implications. Semin Respir Crit Care Med 26:365–371

    Article  PubMed  Google Scholar 

  58. Newman JH, Phillips JA, Loyd JE (2008) Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med 148:278–283

    PubMed  Google Scholar 

  59. Davies RJ, Morrell NW (2008) Molecular mechanisms of pulmonary arterial hypertension: role of mutations in the bone morphogenetic protein type II receptor. Chest 134:1271–1277

    Article  PubMed  CAS  Google Scholar 

  60. Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    Article  PubMed  CAS  Google Scholar 

  61. Song Y, Jones JE, Beppu H, Keaney JF, Loscalzo J, Zhang Y-Y (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562

    Article  PubMed  CAS  Google Scholar 

  62. Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294:L98–L109

    Article  PubMed  CAS  Google Scholar 

  63. West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114

    Article  PubMed  CAS  Google Scholar 

  64. Suzuki H, Twarog BM (1982) Membrane properties of smooth muscle cells in pulmonary hypertensive rats. Am J Physiol 242:H907–H915

    PubMed  CAS  Google Scholar 

  65. Shimoda LA, Polak J (2011) Theme: Hypoxia. Hypoxia and ion channel function. Am J Physiol Cell Physiol 300(5):C951–C967

    Article  PubMed  CAS  Google Scholar 

  66. Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, Orens JB, Rubin LJ (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406

    Article  PubMed  CAS  Google Scholar 

  67. Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111

    PubMed  CAS  Google Scholar 

  68. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  PubMed  CAS  Google Scholar 

  69. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1a-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641

    Article  PubMed  CAS  Google Scholar 

  70. Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726–727

    Article  PubMed  CAS  Google Scholar 

  71. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104:11418–11423

    Article  PubMed  CAS  Google Scholar 

  72. Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G et al (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044

    Article  PubMed  CAS  Google Scholar 

  73. Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884–L894

    PubMed  CAS  Google Scholar 

  74. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537

    Article  PubMed  CAS  Google Scholar 

  75. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  PubMed  CAS  Google Scholar 

  76. Rich S, Kaufmann E, Levy PS (1992) The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327:76–81

    Article  PubMed  CAS  Google Scholar 

  77. Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105–3111

    Article  PubMed  CAS  Google Scholar 

  78. Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, Savineau JP, Baulieu EE (2003) Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci U S A 100:9488–9493

    Article  PubMed  CAS  Google Scholar 

  79. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840

    Article  PubMed  CAS  Google Scholar 

  80. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    PubMed  CAS  Google Scholar 

  81. Landsberg JW, Yuan JX (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44–50

    PubMed  CAS  Google Scholar 

  82. Leggett K, Maylor J, Undem C, Lai N, Lu W, Schweitzer KS, King LS, Myers AC, Sylvester JT, Sidhaye VK et al (2012) Hypoxia-induced migration in pulmonary arterial smooth muscle cells requires calcium-dependent upregulation of aquaporin 1. Am J Physiol Lung Cell Mol Physiol 303:L343–L353

    Article  PubMed  CAS  Google Scholar 

  83. Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JS, Lin MJ (2012) Enhanced store-operated Ca2+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 302:C77–C87

    Article  PubMed  CAS  Google Scholar 

  84. Song MY, Makino A, Yuan JX (2011) STIM2 contributes to enhanced store-operated Ca entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1:84–94

    PubMed  CAS  Google Scholar 

  85. Luke T, Maylor J, Undem C, Sylvester JT, Shimoda LA (2012) Kinase dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 302:L1128–L1139

    Article  PubMed  CAS  Google Scholar 

  86. Hirenallur SD, Haworth ST, Leming JT, Chang J, Hernandez G, Gordon JB, Rusch NJ (2008) Upregulation of vascular calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L915–L924

    Article  CAS  Google Scholar 

  87. Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C et al (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872

    Article  PubMed  CAS  Google Scholar 

  88. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  PubMed  CAS  Google Scholar 

  89. Odell AF, Scott JL, Van Helden DF (2005) EGF induces tyrosine phosphorylation, membrane insertion and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987

    Article  PubMed  CAS  Google Scholar 

  90. Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT (2007) Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 293:L674–L685

    Article  PubMed  CAS  Google Scholar 

  91. Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101:13861–13866

    Article  PubMed  CAS  Google Scholar 

  92. Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101–1107

    Article  PubMed  Google Scholar 

  93. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY et al (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119:2313–2322

    Article  PubMed  CAS  Google Scholar 

  94. Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N, Wang J (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 298:C114–C123

    Article  PubMed  CAS  Google Scholar 

  95. Wharton J, Strange JW, Moller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172:105–113

    Article  PubMed  Google Scholar 

  96. Yang J, Li X, Al-Lamki R, Wu C, Weiss A, Berk J, Schermuly RT, Morrell NW (2013) Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 33:34–42

    Article  PubMed  CAS  Google Scholar 

  97. Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guerin P, Sagan C, Pacaud P, Loirand G (2005) Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol 146:1010–1018

    Article  PubMed  CAS  Google Scholar 

  98. Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX-J (2012) New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling. Am J Physiol Heart Circ Physiol 302:H1546–H1562

    Article  PubMed  CAS  Google Scholar 

  99. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871

    Article  PubMed  CAS  Google Scholar 

  100. Wojciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D, Vasilaki E, Huang M, Mitchell JA, Harrington LS et al (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110:1423–1434

    Article  PubMed  CAS  Google Scholar 

  101. Martin E, Dahan D, Cardouat G, Gillibert-Duplantier J, Marthan R, Savineau JP, Ducret T (2012) Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 464:261–272

    Article  PubMed  CAS  Google Scholar 

  102. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  103. Monzani E, Bazzotti R, Perego C, La Porta CA (2009) AQP1 is not only a water channel: it contributes to cell migration through Lin7/beta-catenin. PLoS One 4:e6167

    Article  PubMed  CAS  Google Scholar 

  104. Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245

    PubMed  CAS  Google Scholar 

  105. Paffett ML, Naik JS, Resta TC, Walker BR (2007) Reduced store-operated Ca2+ entry in pulmonary endothelial cells from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 293:L1135–L1142

    Article  PubMed  CAS  Google Scholar 

  106. Madden JA, Ray DE, Keller PA, Kleinman JG (2001) Ion exchange activity in pulmonary artery smooth muscle cells: the response to hypoxia. Am J Physiol Lung Cell Mol Physiol 280:L264–L271

    PubMed  CAS  Google Scholar 

  107. Quinn DA, Honeyman TW, Joseph PM, Thompson BT, Hales CA, Scheid CR (1991) Contribution of Na+/H+ exchange to pH regulation in pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 5:586–591

    PubMed  CAS  Google Scholar 

  108. Quinn DA, Dahlberg CG, Bonventre JP, Scheid CR, Honeyman T, Joseph PM, Thompson BT, Hales CA (1996) The role of Na+/H+ exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 14:139–145

    PubMed  CAS  Google Scholar 

  109. Rios EJ, Fallon M, Wang J, Shimoda LA (2005) Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289(5):L867–L874

    Article  PubMed  CAS  Google Scholar 

  110. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291:L941–L949

    Article  PubMed  CAS  Google Scholar 

  111. Quinn DA, Du HK, Thompson BT, Hales CA (1998) Amiloride analogs inhibit chronic hypoxic pulmonary hypertension. Am J Respir Crit Care Med 157:1263–1268

    PubMed  CAS  Google Scholar 

  112. Yu L, Quinn DA, Garg HG, Hales CA (2008) Deficiency of the NHE1 gene prevents hypoxia-induced pulmonary hypertension and vascular remodeling. Am J Respir Crit Care Med 177:1276–1284

    Article  PubMed  CAS  Google Scholar 

  113. Yu L, Hales CA (2011) Silencing of NHE1 attenuates PASMC proliferation, hypertrophy and migration via E2F1. Am J Respir Cell Mol Biol 45:923–930

    Article  PubMed  CAS  Google Scholar 

  114. Cutaia MV, Parks N, Centracchio J, Rounds S, Yip KP, Sun AM (1998) Effect of hypoxic exposure on Na+/H+ antiport activity, isoform expression, and localization in endothelial cells. Am J Physiol 275:L442–L451

    PubMed  CAS  Google Scholar 

  115. Phillips PG, Birnby LM, Narendran A (1995) Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Physiol 268:L789–L800

    PubMed  CAS  Google Scholar 

  116. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell 6:1425–1436

    Article  PubMed  CAS  Google Scholar 

  117. Maylor J, Lu W, Pisarcik S, Walker J, Undem C, Myers A, Shimoda L (2010) Reciprocal regulation of Na+/H+ exchanger isoform 1 and Na+/H+ exchange regulatory factor 1 in hypoxic pulmonary arterial smooth muscle cells. FASEB J 24:1023.4, Abstract

    Google Scholar 

  118. Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasche P, Myers ML et al (2008) Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg 85:1261–1270

    Article  PubMed  Google Scholar 

  119. Murphy E, Allen DG (2009) Why did the NHE inhibitor clinical trials fail? J Mol Cell Cardiol 46:137–141

    Article  PubMed  CAS  Google Scholar 

  120. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    Article  PubMed  CAS  Google Scholar 

  121. Ward JPT, Mcmurtry IF (2009) Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 9:287–296

    Article  PubMed  CAS  Google Scholar 

  122. Firth AL, Choi I-W, Park WS (2012) Animal models of pulmonary hypertension: Rho kinase inhibition. Prog Biophys Mol Biol 109:67–75

    Article  PubMed  CAS  Google Scholar 

  123. Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444–454

    Article  PubMed  CAS  Google Scholar 

  124. Yang X, Lee PJ, Long L, Trembath RC, Morrell NW (2007) BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 37:598–605

    Article  PubMed  CAS  Google Scholar 

  125. Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621

    Article  PubMed  CAS  Google Scholar 

  126. Liu Y, Suzuki YJ, Day RM, Fanburg BL (2004) Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 95:579–586

    Article  PubMed  CAS  Google Scholar 

  127. Undem C, Rios EJ, Maylor J, Shimoda LA (2012) Endothelin-1 augments Na+/H+ exchange activity in murine pulmonary arterial smooth muscle cells via Rho kinase. PLoS One 7:e46303

    Article  PubMed  CAS  Google Scholar 

  128. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392

    Article  PubMed  CAS  Google Scholar 

  129. Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, Nakano T (2006) Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174–178

    Article  PubMed  CAS  Google Scholar 

  130. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494–499

    Article  PubMed  Google Scholar 

  131. Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, Nawata J, Shimokawa H (2010) Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Hear Vessel 25:144–149

    Article  Google Scholar 

  132. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656–L664

    Article  PubMed  CAS  Google Scholar 

  133. Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K et al (2004) Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 94:385–393

    Article  PubMed  CAS  Google Scholar 

  134. Girgis RE, Mozammel S, Champion HC, Li D, Peng X, Shimoda LA, Tuder RM, Johns RA, Hassoun PM (2007) Regression of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Lung Cell Mol Physiol 292:L1105–L1110

    Article  PubMed  CAS  Google Scholar 

  135. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK, Trembath RC (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104:790–795

    Article  PubMed  CAS  Google Scholar 

  136. Lu W, Ran P, Zhang D, Lai N, Zhong N, Wang J (2010) Bone morphogenetic protein 4 enhances canonical transient receptor potential expression, store-operated Ca2+ entry, and basal [Ca2+]i in rat distal pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 299:C1370–C1378

    Article  PubMed  CAS  Google Scholar 

  137. Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    Article  PubMed  CAS  Google Scholar 

  138. Anderson L, Lowery JW, Frank DB, Novitskaya T, Jones M, Mortlock DP, Chandler RL, de Caestecker MP (2010) Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 298:R833–R842

    Article  PubMed  CAS  Google Scholar 

  139. Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE, de Caestecker MP (2005) Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97:496–504

    Article  PubMed  CAS  Google Scholar 

  140. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  PubMed  CAS  Google Scholar 

  141. Takahashi H, Goto N, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L450–L458

    Article  PubMed  CAS  Google Scholar 

  142. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209–217

    Article  PubMed  CAS  Google Scholar 

  143. Gangopahyay A, Oran M, Bauer EM, Wertz JW, Comhair SA, Erzurum SC, Bauer PM (2011) Bone morphogenetic protein receptor II is a novel mediator of endothelial nitric-oxide synthase activation. J Biol Chem 286:33134–33140

    Article  PubMed  CAS  Google Scholar 

  144. Hu H, Sung A, Zhao G, Shi L, Qiu D, Nishimura T, Kao PN (2006) Simvastatin enhances bone morphogenetic protein receptor type II expression. Biochem Biophys Res Commun 339:59–64

    Article  PubMed  CAS  Google Scholar 

  145. Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191

    PubMed  CAS  Google Scholar 

  146. Shao D, Park JE, Wort SJ (2011) The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 63:504–511

    Article  PubMed  CAS  Google Scholar 

  147. Shimoda LA, Sham JS, Liu Q, Sylvester JT (2002) Acute and chronic hypoxic pulmonary vasoconstriction: a central role for endothelin-1? Respir Physiol Neurobiol 132:93–106

    Article  PubMed  CAS  Google Scholar 

  148. Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT, Semenza GL, Shimoda LA (2008) Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 294:L309–L318

    Article  PubMed  CAS  Google Scholar 

  149. Davie NJ, Schermuly RT, Weissmann N, Grimminger F, Ghofrani HA (2009) The science of endothelin-1 and endothelin receptor antagonists in the management of pulmonary arterial hypertension: current understanding and future studies. Eur J Clin Investig 39(Suppl 2):38–49

    Article  CAS  Google Scholar 

  150. Mair KM, MacLean MR, Morecroft I, Dempsie Y, Palmer TM (2008) Novel interactions between the 5-HT transporter, 5-HT1B receptors and Rho kinase in vivo and in pulmonary fibroblasts. Br J Pharmacol 155:606–616

    Article  PubMed  CAS  Google Scholar 

  151. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  152. Semenza GL (2005) Pulmonary vascular responses to chronic hypoxia mediated by hypoxia-inducible factor 1. Proc Am Thorac Soc 2:68–70

    Article  PubMed  CAS  Google Scholar 

  153. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003

    Article  PubMed  CAS  Google Scholar 

  154. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103:691–696

    Article  PubMed  CAS  Google Scholar 

  155. Shimoda LA, Semenza GL (2011) HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 183:152–156

    Article  PubMed  CAS  Google Scholar 

  156. Shimoda LA (2012) 55th Bowditch lecture: effects of chronic hypoxia on the pulmonary circulation: role of HIF-1. J Appl Physiol 113:1343–1352

    Article  PubMed  CAS  Google Scholar 

  157. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  158. Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, Carmeliet P (2003) Heterozygous deficiency of hypoxia-inducible factor-2α protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111:1519–1527

    PubMed  CAS  Google Scholar 

  159. Shimoda LA (2010) Hypoxic regulation of ion channels and transporters in pulmonary vascular smooth muscle. Adv Exp Med Biol 661:221–235

    Article  PubMed  CAS  Google Scholar 

  160. Abud EM, Maylor J, Undem C, Punjabi A, Zaiman AL, Myers AC, Sylvester JT, Semenza GL, Shimoda LA (2012) Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci U S A 109:1239–1244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the National Institutes of Health (HL073589, HL096982, HL114902, and HL67191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa A. Shimoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimoda, L.A., Laurie, S.S. Vascular remodeling in pulmonary hypertension. J Mol Med 91, 297–309 (2013). https://doi.org/10.1007/s00109-013-0998-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-0998-0

Keywords

Navigation