Skip to main content
Log in

Effective Estimates on Integral Quadratic Forms: Masser’s Conjecture, Generators of Orthogonal Groups, and Bounds in Reduction Theory

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a conjecture of David Masser on small height integral equivalence between integral quadratic forms. Using our resolution of Masser’s conjecture we show that integral orthogonal groups are generated by small elements which is essentially an effective version of Siegel’s theorem on the finite generation of these groups. We also obtain new estimates on reduction theory and representation theory of integral quadratic forms. Our line of attack is to make and exploit the connections between certain problems about quadratic forms and group actions, whence we may study the problem in the well-developed theory of homogeneous dynamics, arithmetic groups, and the spectral theory of automorphic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Blomer and F. Brumley. On the Ramanujan conjecture over number fields. Annals of Mathematics, (2)174 (2011), 581–605.

  2. N. Bergeron and L. Clozel. Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques. Inventiones mathematicae, (3)192 (2013), 505–532.

  3. J.W. Benham and J.S. Hsia. Spinor equivalence of quadratic forms. Journal of Number Theory, (3)17(1983), 337–342.

  4. A. Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Annals of Mathematics, (2)75 (1962), 485–535.

  5. M. Burger and P. Sarnak. Ramanujan duals II. Inventiones mathematicae, (1)106 (1991), 1–11.

  6. M. Burger, V. Schroeder. Volume, diameter and the first eigenvalue of locally symmetric spaces of rank one. Journal of Differential Geometry, (2)26 (1987), 273–284.

  7. J.W.S. Cassels. Rational Quadratic Forms. Academic Press, London (1978).

    MATH  Google Scholar 

  8. J.W.S. Cassels. An Introduction to the Geometry of Numbers. (second printing). Springer-Verlag (1971).

  9. L. Clozel. Démonstration de la conjecture \(\tau \). Inventiones mathematicae, (2)151 (2003), 297–328.

  10. J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag, New York (1999).

    Book  MATH  Google Scholar 

  11. M. Cowling. Sur les coefficients des representations unitaires des groupes de Lie simples. In: Analyse Harmonique sur les Groupes de Lie, II. Lecture Notes in Math. Vol. 739. Springer, Berlin (1979), pp. 132–178.

  12. S.G. Dani. On orbits of unipotent flows on homogeneous spaces. II. Ergodic Theory and Dynamical Systems, 6 (1986), 67–182.

    MathSciNet  MATH  Google Scholar 

  13. S.G. Dani and G.A. Margulis. Values of quadratic forms at primitive integral points. Inventiones mathematicae, (2)98 (1989), 405–424.

  14. R. Dietmann. Small solutions of quadratic Diophantine equations. Proceedings of the London Mathematical Society, (3)86 (2003), 545–582.

  15. R. Dietmann. Polynomial bounds for equivalence of quadratic forms with cube-free determinant. Mathematical Proceedings of the Cambridge Philosophical Society, (3)143 (2007), 521–532.

  16. W. Duke, Z. Rudnick and P. Sarnak. Density of integer points on affine homogeneous varieties. Duke Mathematical Journal, (1)71 (1993), 143–179.

  17. M. Einsiedler, G.A. Margulis and A. Venkatesh. Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces. Inventiones mathematicae, (1)177 (2009), 137–212.

  18. J. Ellenberg and A. Venkatesh. Local-global principles for representations of quadratic forms. Inventiones mathematicae, (2)171 (2008), 257– 279.

  19. A. Eskin, G.A. Margulis and S. Mozes. Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture. Annals of Mathematics (2), (1)147 (1998), 93–141.

  20. J. Faraut. Analysis on Lie groups. An Introduction. Cambridge University Press, Cambridge (2008).

    Book  MATH  Google Scholar 

  21. L. Fukshansky. Heights and quadratic forms: on Cassels’ theorem and its generalizations. Contemporary Mathematics, (2013), 77–94.

  22. F. Grunewald and D. Segal. Some general algorithms. I. Arithmetic groups. Annals of Mathematics (2), (3)112 (1980), 531–583.

  23. T. Hirai. On irreducible representations of the Lorentz group of \(n\)-th order. Proceedings of the Japan Academy, 38 (1962), 258–262.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.S. Hsia. Arithmetic of Indefinite Quadratic Forms. Contemporary Mathematics, Vol. 249. Amer. Math. Soc., Providence, RI (1999).

  25. J.S. Hsia, Y.Y. Shao and F. Xu. Representations of indefinite quadratic forms. Journal für die reine und angewandte Mathematik, 494 (1998), 129–140.

  26. R. Howe and E.-C. Tan. Nonabelian Harmonic Analysis. Applications of SL \((2,\mathbb{R})\). Springer-Verlag, New York (1992).

  27. H. Jacquet and R. Langlands. Automorphic Forms on \(GL(2)\). Springer-Verlag, Berlin, New York (1970).

    MATH  Google Scholar 

  28. H.H. Kim and P. Sarnak. Refined estimates towards the Ramanujan and Selberg conjectures. Appendix to Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\). Journal of the American Mathematical Society,(1)16(2003), 139–183.

  29. D. Kleinbock and G.A. Margulis. Bounded orbits of nonquasiunipotent flows on homogeneous spaces. American Mathematical Society Translations (2), 171 (1996), 141–172.

  30. D. Kleinbock and G.A. Margulis. Flows on homogeneous spaces and Diophantine approximation on manifolds. Annals of Mathematics, 148 (1998), 339–360.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Kneser. Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Archiv der Mathematik, 7 (1956), 323–332.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Kontorovich and H. Oh. Almost prime Pythagorean triples in thin orbits. Journal für die reine und angewandte Mathematik, 667 (2012), 89–131.

  33. D.M. Kornhauser. On small solutions of the general nonsingular quadratic Diophantine equation in five and more unknowns. Mathematical Proceedings of the Cambridge Philosophical Society, 107 (1990), 197–211.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Lagarias. On the computational complexity of determining the solvability or unsolvability of the equation \(x^2-dy^2=-1\). Transactions of the American Mathematical Society, 260 (1980), 485–508.

    MathSciNet  MATH  Google Scholar 

  35. J.-S. Li. The minimal decay of matrix coefficients for classical groups. In: Harmonic Analysis in China, Math. Appl., Vol. 327. Kluwer Acad. Publ., Dordrecht (1995), pp. 146–169.

  36. E. Lindenstrauss and G.A. Margulis. Effective estimates on indefinite ternary forms. Israel Journal of Mathematics, to appear.

  37. G.A. Margulis. The action of unipotent groups in a lattice space. Matematicheskii Sbornik (N.S.), (128)86 (1971), 552–556.

  38. G.A. Margulis. Indefinite Quadratic Forms and Unipotent Flows on Homogeneous Spaces. Proceeding of “Semester on dynamical systems and ergodic theory” (Warsaw 1986)23. Banach Center Publ (1989), pp. 399–409.

  39. G.A. Margulis. Discrete Subgroups of Semisimple Lie Groups. Springer-Verlag (1991).

  40. G.A. Margulis. Random Walks on the Space of Lattices and the Finiteness of Covolumes of Arithmetic Subgroups. Algebraic Groups and Arithmetic. Tata Inst. Fund. Res., Mumbai (2004), pp. 409–425.

  41. D.W. Masser. Search bounds for Diophantine equations. In: A Panorama of Number Theory or the View from Baker's Garden (Zurich 1999), pp. 247–259

  42. A. Mohammadi and H. Oh. Matrix coefficients, Counting and Primes for orbits of geometrically finite groups. Journal of the European Mathematical Society, 17 (2015), 837–897.

    Article  MathSciNet  MATH  Google Scholar 

  43. C.C. Moore. Ergodicity of flows on homogeneous spaces. American Journal of Mathematics, 88 (1966), 154–178.

    Article  MathSciNet  MATH  Google Scholar 

  44. C.C. Moore. Exponential decay of correlation coefficients for geodesic flows. In: Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, Calif., 1984). Springer, New York (1987), pp. 163–181.

  45. M. Nakasuji. Generalized Ramanujan conjecture over general imaginary quadratic fields. Forum Mathematicum, (1)24 (2012), 85–98.

  46. H. Oh. Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Mathematical Journal, (1)113 (2002), 133–192.

  47. O.T. O'Meara. The integral representations of quadratic forms over local fields. American Journal of Mathematics, 80 (1958), 843–878.

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Platonov and A. Rapinchuk. Algebraic Groups and Number Theory. Academic Press, INC (1994)

    MATH  Google Scholar 

  49. G. Prasad. Volumes of \(S\)-arithmetic quotients of semi-simple groups. Publications Mathématiques de l'IHÉS, 69 (1989), 91–117.

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Sarnak. Notes on the generalized Ramanujan conjectures. In: Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math. Proc. Vol. 4. Amer. Math. Soc., Providence, RI (2005), pp. 659–685.

  51. A. Schinzel. Integer points on conics. Commentationes Mathimaticae Prace Matematyczne. 16 (1972), 133–135.

  52. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Ltd., Chichester (1986)

    MATH  Google Scholar 

  53. R. Schulze-Pillot. Representation of quadratic forms by integral quadratic forms. In: Quadratic and Higher Degree Forms. Dev. Math., Vol. 31. Springer, New York (2013), pp. 233–253.

  54. A. Selberg. On the estimation of Fourier coefficients of modular forms. In: Proceedings of Symposia in Pure Mathematics VIII. Providence, R.I. AMS (1965), pp. 1–15.

  55. Y. Shalom. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Annals of Mathematics (2), (1)152 (2000), 113–182.

  56. C.L. Siegel. Einheiten quadratischer Formen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 13 (1940), 209–239.

    Article  MATH  Google Scholar 

  57. C.L. Siegel. Zur Theorie der quadratische Formen. Nachrichten der Akademie der Wissenschaften zu Göttingen. II. Mathematisch-Physikalische Klasse (1972), 21–46.

  58. S. Straumann. Das Äquivalenzproblem ganzer quadratischer Formen: Einige explizite Resultate, Diplomarbeit. Universität Basel (1999).

  59. B.A. Venkov. Elementary Number Theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen (1970).

    MATH  Google Scholar 

  60. G.L. Watson. Bounded representations of integers by quadratic forms. Mathematika 4 (1957), 17–24.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Li.

Additional information

H. Li was supported in part by an AMS Simons Travel Grant. G. A. Margulis was supported in part by NSF Grant #1265695.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Margulis, G.A. Effective Estimates on Integral Quadratic Forms: Masser’s Conjecture, Generators of Orthogonal Groups, and Bounds in Reduction Theory. Geom. Funct. Anal. 26, 874–908 (2016). https://doi.org/10.1007/s00039-016-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0379-2

Keywords and phrases

Mathematics Subject Classification

Navigation