Skip to main content
Log in

Justification and refinement of Winkler–Fuss hypothesis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Two-parametric asymptotic analysis of the equilibrium of an elastic half-space coated by a thin soft layer is developed. The initial scaling is motivated by the exact solution of the plane problem for a vertical harmonic load. It is established that the Winkler–Fuss hypothesis is valid only for a sufficiently high contrast in the stiffnesses of the layer and the half-space. As an alternative, a uniformly valid non-local approximation is proposed. Higher-order corrections to the Winkler–Fuss formulation, such as the Pasternak model, are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  2. Aghalovyan, L.: Asymptotic Theory of Anisotropic Plates and Shells. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  3. Aleksandrova, G.P.: Contact problems in bending of a slab lying on an elastic foundation. Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela (1), 97–116 (1973)

  4. Alexandrov, V.M.: Contact problems on soft and rigid coatings of an elastic half-plane. Mech. Solids 45(1), 34–40 (2010)

    Article  MathSciNet  Google Scholar 

  5. Borodich, F.M.: The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)

    Article  Google Scholar 

  6. Challamel, N., Meftah, S.A., Bernard, F.: Buckling of elastic beams on non-local foundation: a revisiting of Reissner model. Mech. Res. Commun. 37(5), 472–475 (2010)

    Article  MATH  Google Scholar 

  7. Dai, H.-H., Kaplunov, J., Prikazchikov, D.A.: A long-wave model for the surface elastic wave in a coated half-space. Proc. R. Soc. A 466(2122), 3097–3116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Paola, M., Marino, F., Zingales, M.: A generalized model of elastic foundation based on long-range interactions: integral and fractional model. Int. J. Solids Struct. 45(17), 3124–3137 (2009)

    Article  MATH  Google Scholar 

  9. Dutta, S.C., Roy, R.: A critical review on idealization and modeling for interaction among soil-foundation-structure system. Comput. Struct. 80(20–21), 1579–1594 (2002)

    Article  Google Scholar 

  10. Epshtein, S.A., Borodich, F.M., Bull, S.J.: Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation. Appl. Phys. A 119(1), 325–335 (2015)

    Article  Google Scholar 

  11. Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip. J. Eng. Math. 70(4), 399–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer-Cripps, A.C.: Nanoindentation Testing. Nanoindentation, pp. 21–37. Springer, Berlin (2011)

    Google Scholar 

  13. Frýba, L.: History of Winkler foundation. Veh. Syst. Dyn. 24(1), 7–12 (1995)

    Article  Google Scholar 

  14. Gazetas, G., Dobry, R.: Horizontal response of piles in layered soils. J. Geotech. Eng. 110(1), 20–40 (1984)

    Article  Google Scholar 

  15. Goldenveizer, A.L., Kaplunov, J.D., Nolde, E.V.: On Timoshenko-Reissner type theories of plates and shells. Int. J. Solids Struct. 30(5), 675–694 (1993)

    Article  MATH  Google Scholar 

  16. Hetenyi, M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1958)

    MATH  Google Scholar 

  17. Kaplunov, J., Nobili, A.: The edge waves on a Kirchhoff plate bilaterally supported by a two-parameter elastic foundation. J. Vib. Control 23(12), 2014–2022 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)

    Article  MATH  Google Scholar 

  19. Kovalenko, E.V., Buyanovskii, I.A.: On the durability prediction for an elastic cylinder-elastic layer pair reinforced by thin coating according to the wear criterion. J. Mach. Manuf. Reliab. 44(4), 357–362 (2015)

    Article  Google Scholar 

  20. Kuznetsov, V.I.: Elastic Foundations. Gosstroiizdat, Moscow (1952)

    Google Scholar 

  21. Liyanapathirana, D.S., Poulos, H.G.: Pseudostatic approach for seismic analysis of piles in liquefying soil. J. Geotech. Geoenviron. Eng. 131(12), 1480–1487 (2005)

    Article  Google Scholar 

  22. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  23. Martynyak, R.M., Prokopyshyn, I.A., Prokopyshyn, I.I.: Contact of elastic bodies with nonlinear Winkler surface layers. J. Math. Sci. 205(4), 535–553 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morozov, N.F., Tovstik, P.E.: On modes of buckling for a plate on an elastic foundation. Mech. Solids 45(4), 519–528 (2010)

    Article  Google Scholar 

  25. Nikolaou, S., Mylonakis, G., Gazetas, G., Tazoh, T.: Kinematic pile bending during earthquakes: analysis and field measurements. Geotechnique 51(5), 425–440 (2001)

    Article  Google Scholar 

  26. Nobili, A.: Superposition principle for the tensionless contact of a beam resting on a Winkler or a Pasternak foundation. J. Eng. Mech. 139(10), 1470–1478 (2012)

    Article  Google Scholar 

  27. Pasternak, P.L.: On a new method of an elastic foundation by means of two foundation constants. Gos. Izd. Lit. po Stroit. i Arkhitekt., Moscow (1954)

  28. Wang, Y.H., Tham, L.G., Cheung, Y.K.: Beams and plates on elastic foundations: a review. Prog. Struct. Eng. Mater. 7(4), 174–182 (2005)

    Article  Google Scholar 

  29. Winkler, E.: Die Lehre von der Elastizit at und Festigkeit. Domimicus, Prague (1867)

    Google Scholar 

  30. Yim, C.-S., Chopra, A.K.: Earthquake response of structures with partial uplift on Winkler foundation. Earthq. Eng. Struct. Dyn. 12(2), 263–281 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kaplunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplunov, J., Prikazchikov, D. & Sultanova, L. Justification and refinement of Winkler–Fuss hypothesis. Z. Angew. Math. Phys. 69, 80 (2018). https://doi.org/10.1007/s00033-018-0974-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0974-1

Keywords

Mathematics Subject Classification

Navigation