Skip to main content
Log in

The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density–pressure relation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The relativistic full Euler system with generalized Chaplygin proper energy density–pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine–Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine–Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amendola, L., Finelli, F., Burigana, C., Carturan, D.: WMAP and the generalized Chaplygin gas. J. Cosmol. Astropart. Phys. 07, 005 (2003)

    Article  MATH  Google Scholar 

  2. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas and cosmic microwave background radiation constraints. Phys. Rev. D 67, 231–232 (2003)

    Google Scholar 

  3. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    Article  Google Scholar 

  4. Brenier, Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, T., Hsiao, L.: The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 41. Longman Scientific and Technical, New York (1989)

    Google Scholar 

  6. Chen, G.Q., Liu, H.: Formation of ${\delta }$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34, 925–938 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G.Q., Li, Y.: Stability of Riemann solutions with large oscillation for the relativistic Euler equations. J. Differ. Equ. 202, 332–353 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, H.: Riemann problem for one-dimensional system of conservation laws of mass, momentum and energy in zero-pressure gas dynamics. Differ. Equ. Appl. 4, 653–664 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, H., Yang, H.: Riemann problem for the relativistic Chaplygin Euler equations. J. Math. Anal. Appl. 381, 17–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cruz, N., Lepe, S., Pea, F.: Dissipative generalized Chaplygin gas as phantom dark energy Physics. Phys. Lett. B 646, 177–182 (2007)

    Article  Google Scholar 

  11. Geng, Y., Li, Y.: Non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations. Z. Angew. Math. Phys. 61, 201–220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, L., Li, T., Yin, G.: The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term. J. Math. Anal. Appl. 455, 127–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayes, B.T., LeFloch, P.G.: Measure solutions to a strictly hyperbolic system of conservation laws. Nonlinearity 9, 1547–1563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, C.H., Lin, S.S., Makino, T.: On the relativistic Euler equations. Methods Appl. Anal. 8, 159–207 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Huang, M., Shao, Z.: Riemann problem for the relativistic generalized Chaplygin Euler equations. Commun. Pure Appl. Anal. 15, 127–138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keyfitz, B.L., Kranzer, H.C.: Spaces of weighted measures for conservation laws with singular shock solutions. J Differential Equations 118, 420–451 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lax, P.D.: HyperbolicSystems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973)

    Book  Google Scholar 

  18. Li, H., Shao, Z.: Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Commun. Pure Appl. Anal. 15, 2373–2400 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhang, T., Yang, S.L.: The Two-Dimensional Riemann Problem in Gas Dynamics. Longman Scientific and Technical, New York (1998)

    MATH  Google Scholar 

  20. Li, T.T., Qin, T.H.: Physics and Partial Differential Equations, Volume II (trans: Li Y). Higher Education Press, Beijing (2014)

  21. Makler, M., Oliveira, S.Q.D., Waga, I.: Constrains on the generalized Chaplygin gas from supernovae observations. Phys. B 555, 1–6 (2003)

    Google Scholar 

  22. Nedeljkov, M., Ružižić, S.: On the uniqueness of solution to generalized Chaplygin gas. Discret. Contin. Dyn. Syst. 37, 4439–4460 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nilsson, B., Shelkovich, V.M.: Mass, momentum and energy conservation laws in zero-pressure gas dynamics and delta-shocks. Appl. Anal. 90, 1677–1689 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nilsson, B., Rozanova, O.S., Shelkovich, V.M.: Mass, momentum and energy conservation laws in zero-pressure gas dynamics and $\delta $-shocks: II. Appl. Anal. 90, 831–842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pang, Y.: Delta shock wave in the compressible Euler equations for a Chaplygin gas. J. Math. Anal. Appl. 448, 245–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pang, Y.: Delta shock wave with Dirac delta function in multiple components for the system of generalized Chaplygin gas dynamics. Bound. Value Probl. 2016, 202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shao, Z.: Delta shocks in the relativistic full Euler equations for a Chaplygin gas, arXiv:1709.08445 [math.AP]

  28. Shao, Z.: Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations. Z. Angew. Math. Phys. 67, 66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sheng, W., Wang, G., Yin, G.: Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes. Nonlinear Anal. RWA 22, 115–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sheng, W., Zhang, T.: The Riemann problem for the transportation equations in gas dynamics, vol. 137. Memoirs of the American Mathematical Society, AMS, Providence (1999)

    MATH  Google Scholar 

  31. Silva, P.T., Bertolami, O.: Expected constraints on the generalized Chaplygin equation of state from future supernova experiments and gravitational lensing statistics. Astrophys. J. 599, 829–838 (2003)

    Article  Google Scholar 

  32. Smoller, J., Temple, B.: Global solutions of the relativistic Euler equations. Comm. Math. Phys 156, 67–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, M.: The exact Riemann solutions to the generalized Chaplygin gas equations with friction. Commun. Nonlinear Sci. Numer. Simul. 36, 342–353 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tan, D.C., Zhang, T., Zheng, Y.X.: Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112, 1–32 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thompson, K.W.: The special relativistic shock tube. J. Fluid Mech. 171, 365–375 (1986)

    Article  MATH  Google Scholar 

  36. Wang, G.: The Riemann problem for one dimensional generalized Chaplygin gas dynamics. J. Math. Anal. Appl. 403, 434–450 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, H., Zhang, Y.: New developments of delta shock waves and its applications in systems of conservation laws. J. Differ. Equ. 252, 5951–5993 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, H., Zhang, Y.: Delta shock waves with Dirac delta function in both components for systems of conservation laws. J. Differ. Equ. 257, 4369–4402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yin, G., Sheng, W.: Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases. J. Math. Anal. Appl. 355, 594–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Shao.

Additional information

Supported by the National Natural Science Foundation of China (No. 70371025), the Scientific Research Foundation of the Ministry of Education of China (No. 02JA790014), the Natural Science Foundation of Fujian Province of China (No. 2015J01014) and the Science and Technology Developmental Foundation of Fuzhou University (No. 2004-XQ-16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Z. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density–pressure relation. Z. Angew. Math. Phys. 69, 44 (2018). https://doi.org/10.1007/s00033-018-0937-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0937-6

Keywords

Mathematics Subject Classification

Navigation