Skip to main content
Log in

Large-Time Behavior of Solutions in the Critical Spaces for the Non-isentropic Compressible Navier–Stokes Equations with Capillarity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the large-time behavior for the non-isentropic compressible Navier–Stokes equations with capillarity in the whole space \({\mathbb {R}}^{d}\) (\(d\ge 3\)). Under an additional smallness assumption of the low frequencies of initial data, the time-decay estimates of \(L^{q}\)\(L^{r}\) type for global strong solutions near constant equilibrium (away from vacuum) can be deduced by establishing the time-weighted energy inequality. On the other hand, a pure energy approach (without the spectral analysis) different from the time-weighted energy method is performed, which allows us not only to get the time-decay rates but also to remove the smallness condition of low frequencies of initial data. The treatment of new nonlinear terms arising from capillary mainly depends on non classical Besov product estimates and the refined use of Sobolev embeddings and interpolations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Those function are further assumed to be real analytic near zero in order to establish the global evolution of Gevrey.

  2. Note that for technical reasons, we need a small overlap between low and high frequencies.

References

  1. Van der Waals, J.F.: Thermodynamische theorie der kapillarität unter voraussetzung stetiger dichteänderung. Z. Phys. Chem. 13, 657–725 (1894)

    Article  Google Scholar 

  2. Korteweg, D.J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. Sci. Exactes Nat. II(6), 1–24 (1901)

    MATH  Google Scholar 

  3. Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88(2), 95–133 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sha, K.J., Li, Y.P.: Low Mach number limit of the three-dimensional full compressible Navier–Stokes–Korteweg equations. Z. Angew. Math. Phys. 70(6), 169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, X., Tan, Z.: Decay estimates of the non-isentropic compressible fluid model of Korteweg type in \({\mathbb{R}}^{3}\). Commun. Math. Sci. 12(8), 1437–1456 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jüngel, A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM J. Math. Anal. 42(3), 1025–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jüngel, A., Milisic, J.P.: Quantum Navier–Stokes equations. In: Günther, M., Brunk, A., Brunk, M., Schöps, S., Striebel, M. (eds.) In Progress in Industrial Mathematics at ECMI 2010, pp. 427–439. Springer, Berlin (2012)

    Google Scholar 

  8. Bie, Q.Y., Wang, Q.R., Yao, Z.A.: Optimal decay for the full compressible Navier–Stokes system in critical \({L}^{p}\) Besov spaces (2020). arXiv:1907.12533v2

  9. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160(1), 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danchin, R., Xu, J.: Optimal decay estimates in the critical \({L}^{p}\) framework for flows of compressible viscous and heat-conductive gases. J. Math. Fluid Mech. 20(4), 1641–1665 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci. 55(9), 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 367–104 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Shi, W.X., Xu, J.: The large-time behavior of solutions in the critical \({L}^{p}\) framework for compressible viscous and heat-conductive gas flows. J. Math. Phys. 61(6), 061516 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hattori, H., Li, D.N.: Solutions for two-dimensional system for materials of Korteweg type. J. Differ. Equ. 25(1), 85–98 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Hattori, H., Li, D.N.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198(1), 84–97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hattori, H., Li, D.N.: The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J. Partial Differ. Equ. 9(4), 323–342 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Hou, X.F., Peng, H.J., Zhu, C.J.: Global classical solutions to the 3D Navier–Stokes–Korteweg equations with small initial energy. Anal. Appl. 16(1), 55–84 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, X.F., Peng, H.J., Zhu, C.J.: Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Anal. Real World Appl. 43, 18–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Z.Z., He, L., Zhao, H.J.: Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data. Z. Angew. Math. Phys. 68(4), 79 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bresch, D., Desjardins, B., Lin, C.K.: On some compressible fluid models: Korteweg, lubrication and shallow water system. Commun. Partial Differ. Equ. 28(3–4), 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13(2), 223–249 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kotschote, M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(4), 679–696 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kotschote, M.: Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12(4), 473–484 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 63(1), 21–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Z.Z., Zhao, H.J.: Existence and nonlinear stability solutions to the full compressible Navier–Stokes–Korteweg system. J. Math. Pures Anal. 101(3), 330–371 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y.J., Tan, Z.: Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 379(1), 256–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tan, Z., Wang, H.Q., Xu, J.K.: Global existence and optimal \({L}^{2}\) decay rate for the strong solutions to the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 390(1), 181–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y.P.: Global existence and optimal decay rate of the compressible Navier–Stokes–Korteweg equations with external force. J. Math. Anal. Appl. 388(2), 1218–1232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, W.J., Wang, W.K.: Decay rate of the compressible Navier–Stokes–Korteweg equations with potential force. Discrete Contin. Dyn. Syst. 35(1), 513–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao, J.C., Zou, Y., Yao, Z.A.: Long-time behavior of solution for the compressible Navier–Stokes–Korteweg equations in \({\mathbb{R}}^{3}\). Appl. Math. Lett. 48, 30–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan, Z., Zhang, R.F.: Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 65(2), 279–300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, J., Xiao, G.G., Zhang, Y.H.: Optimal large time behavior of the compressible Navier–Stokes–Korteweg system in \({\mathbb{R}}^{3}\). Appl. Math. Lett. 120, 107274 (2021)

    Article  MATH  Google Scholar 

  33. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13(3), 515–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data. Comm. Partial Differ. Equ. 19(5–6), 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(1), 97–133 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Charve, F., Danchin, R., Xu, J.: Gevrey and decay for the compressible Navier–Stokes system with capillarity. Indiana Univ. Math. J. 70(5), 1903–1944 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chikami, N., Kobayashi, T.: Global well-posedness and time-decay estimates of the compressible Navier–Stokes–Korteweg system in critical Besov spaces. J. Math. Fluid Mech. 21(2), 31 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zhang, S.H.: A class of global large solutions to the compressible Navier–Stokes–Korteweg system in critical Besov spaces. J. Evol. Equ. 20(4), 1531–1561 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Y.Z., Wang, Y.X.: Optimal decay estimate of mild solutions to the compressible Navier–Stokes–Korteweg system in the critical Besov space. Math. Methods Appl. Sci. 41(18), 9592–9606 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kawashima, S., Shibata, Y., Xu, J.: The \(L^p\) energy methods and decay for the compressible Navier–Stokes equations with capillarity. J. Math. Pures Appl. 154(9), 146–184 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Haspot, B.: Existence of strong solutions for nonisothermal Korteweg system. Ann. Math. Blaise Pascal 16(2), 431–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shi, W.X.: Gevrey analyticity for the non-isentropic compressible Navier–Stokes equations with capillarity. Preprint (2022)

  44. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \({L}^{p}\) framework. Arch. Ration. Mech. Anal. 224(1), 53–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, J.: A low-frequency assumption for optimal time-decay estimates to the compressible Navier–Stokes equations. Commun. Math. Phys. 371(2), 525–560 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202(2), 427–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–25 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Xin, Z.P., Xu, J.: Optimal decay for the compressible Navier–Stokes equations without additional smallness assumptions. J. Differ. Equ. 274, 543–575 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Danchin, R.: Fourier analysis methods for the compressible Navier–Stokes equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1843–1903. Springer, Cham (2016)

    Google Scholar 

  50. Mitrinoviéc, D.S., Pecaric, J.E., Fink, A.M.: Inequalities for Functions and Their Integrals and Derivatives. Springer, Dordrecht (1991)

    Google Scholar 

  51. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    MATH  Google Scholar 

  52. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  ADS  MATH  Google Scholar 

  53. Chemin, J.-Y.: Théorèmes d’unicité pour le systèm de Navier–Stokes tridimensionnel. J. Anal. Math. 77(1), 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen, Q.L., Miao, C.X., Zhang, Z.F.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63(9), 1173–1224 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Shi, W.X., Xu, J.: A sharp time-weighted inequality for the compressible Navier–Stokes-Poisson system in the critical \({L}^{p}\) framework. J. Differ. Equ. 266(10), 6426–6458 (2019)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The first author (W. X. Shi) is supported by the National Natural Science Foundation of China (12101263) and the Fundamental Research Funds for the Central Universities (JUSRP121047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixuan Shi.

Ethics declarations

Conflict of interest

There are no conflict of interest to this work.

Additional information

Communicated by Y. Shibata

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For convenience of reader, we briefly recall Littlewood-Paley decomposition, Besov spaces and some analysis tools. For more details, the interested reader may refer to Chaps. 2 and 3 of [51].

1.1 A.1 Littlewood–Paley Decomposition and Besov Spaces

Let us begin with the homogeneous Littlewood–Paley decomposition. To do this, one may fix a smooth radial non increasing function \(\chi \) with \(\mathrm {Supp}\,\chi \subset B\left( 0,\frac{4}{3}\right) \) and \(\chi \equiv 1\) on \(B\left( 0,\frac{3}{4}\right) \). Set \(\varphi (\xi ) =\chi (\xi /2)-\chi (\xi )\). It is not difficult to check that

$$\begin{aligned} \sum _{j\in {\mathbb {Z}}}\varphi ( 2^{-j}\cdot ) =1\ \ \text {in}\ \ {\mathbb {R}}^{d}\setminus \{ 0\} \ \ \text {and}\ \ \mathrm {Supp}\,\varphi \subset \{ \xi \in {\mathbb {R}}^{d}:3/4\le |\xi |\le 8/3\} . \end{aligned}$$

Denoting \(h\triangleq {\mathcal {F}}^{-1}\varphi \), we then define the dyadic blocks \({\dot{\Delta }}_{j}\) (\(j\in {\mathbb {Z}}\)) as follows

$$\begin{aligned} {\dot{\Delta }}_{j}f\triangleq \varphi (2^{-j}D)f={\mathcal {F}}^{-1}(\varphi (2^{-j}\cdot ){\mathcal {F}}f)=2^{jd}h(2^{j}\cdot )\star f. \end{aligned}$$

Formally, one has the following homogeneous decomposition for any tempered distribution \(f\in {\mathcal {S}}^{\prime }({\mathbb {R}}^{d})\)

$$\begin{aligned} f=\sum _{j\in {\mathbb {Z}}}{\dot{\Delta }}_{j}f. \end{aligned}$$
(A1)

The equality holds true in the set \({\mathcal {S}}'\) of tempered distributions whenever f belongs to

$$\begin{aligned} {\mathcal {S}}'_{0}=\big \{f\in {\mathcal {S}}'|\lim _{j\rightarrow -\infty }\Vert {\dot{S}}_{j}u\Vert _{L^{\infty }}=0\big \}, \end{aligned}$$

where \({\dot{S}}_{j}f\) stands for the low frequency cut-off defined by \({\dot{S}}_{j}f\triangleq \chi (2^{-j}D)f\).

Let us now define the homogeneous Besov spaces \({\dot{B}}^{s}_{p,r}\) in terms of Littlewood-Paley decomposition.

Definition 1

For \(s\in {\mathbb {R}}\) and \(1\le p,r\le \infty ,\) the homogeneous Besov spaces \({\dot{B}}^{s}_{p,r}\) is defined by

$$\begin{aligned} {\dot{B}}^{s}_{p,r}\triangleq \{f\in {\mathcal {S}}'_{0}:\Vert f\Vert _{{\dot{B}}^{s}_{p,r}}<+\infty \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{\dot{B}^{s}_{p,r}}\triangleq \Vert (2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L^{p}})\Vert _{\ell ^{r}({\mathbb {Z}})}. \end{aligned}$$
(A2)

When investigating the evolution PDEs, it is somehow natural to take a class of mixed space-time Besov spaces, which was first introduced by Chemin and Lerner [52] (see also [53] for the particular case of Sobolev spaces).

Definition 2

For \(T>0, s\in {\mathbb {R}}\) and \(1\le r,\rho \le \infty \), the homogeneous Chemin–Lerner space \({\widetilde{L}}^{\rho }_{T}({\dot{B}}^{s}_{p,r})\) is defined by

$$\begin{aligned} {\widetilde{L}}^{\rho }_{T}({\dot{B}}^{s}_{p,r})\triangleq \{f\in L^{\rho }(0,T;{\mathcal {S}}'_{0}):\Vert f\Vert _{{\widetilde{L}}^{\rho }_{T}({\dot{B}}^{s}_{p,r})}<+\infty \}, \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{{\widetilde{L}}^{\rho }_{T}({\dot{B}}^{s}_{p,r})}\triangleq \Vert (2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L^{\rho }_{T}(L^{p})})\Vert _{\ell ^{r}({\mathbb {Z}})}. \end{aligned}$$
(A3)

The index T will be omitted if \(T=+\infty \) and we denote by the following functional space:

A direct application of Minkowski’s inequality implies that

$$\begin{aligned} \Vert f\Vert _{{\widetilde{L}}^{\rho }_{T}(B^{s}_{p,r})}\le \Vert f\Vert _{L^{\rho }_{T}(B^{s}_{p,r})} \ \ \text{ if } \ \ r\ge \rho ;\ \ \Vert f\Vert _{{\widetilde{L}}^{\rho }_{T}(B^{s}_{p,r})}\ge \Vert f\Vert _{L^{\rho }_{T}(B^{s}_{p,r})} \ \ \text{ if } \ \ r\le \rho . \end{aligned}$$

Restricting the above norms (A2) and (A3) to the low or high frequencies parts of distributions will be fundamental in this paper. For example, let us fix some integer \(j_{0}\) (the value of which will come from the proof of the main results) and putFootnote 2

$$\begin{aligned}&\Vert f\Vert _{{\dot{B}}_{p,1}^{s}}^{\ell } \triangleq \sum _{j\le j_{0}}2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L^{p}} \ \ \text{ and } \ \ \Vert f\Vert _{{\dot{B}}_{p,1}^{s}}^{h}\triangleq \sum _{j\ge j_{0}-1}2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L^{p}}, \\&\Vert f\Vert _{{\tilde{L}}_{T}^{\infty } ({\dot{B}}_{p,1}^{s})}^{\ell } \triangleq \sum _{j\le j_{0}}2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L_{T}^{\infty } (L^{p})} \end{aligned}$$

and

$$\begin{aligned} \Vert f\Vert _{{\tilde{L}}_{T}^{\infty } ({\dot{B}}_{p,1}^{s})}^{h}\triangleq \sum _{j\ge j_{0}-1}2^{js}\Vert {\dot{\Delta }}_{j}f\Vert _{L_{T}^{\infty } (L^{p})}. \end{aligned}$$

1.2 A.2 Some Analysis Tools

Now, let us review some nonlinear tools in the \(L^{p}\) framework, which will play a key role in our analysis.

We shall use repeatedly the following classical properties (see [51]):

Proposition 2

(Embedding for Besov spaces on \({\mathbb {R}}^{d}\)).

  • For any \(p\in [1,\infty ]\) we have the continuous embedding \({\dot{B}}^{0}_{p,1}\hookrightarrow L^{p}\hookrightarrow {\dot{B}}^{0}_{p,\infty }.\)

  • If \(s\in {\mathbb {R}}\), \(1\le p_{1}\le p_{2}\le \infty \) and \(1\le r_{1}\le r_{2}\le \infty ,\) then \({\dot{B}}^{s}_{p_1,r_1}\hookrightarrow {\dot{B}}^{s-d(\frac{1}{p_{1}}-\frac{1}{p_{2}})}_{p_{2},r_{2}}\).

  • The space \({\dot{B}}^{\frac{d}{p}}_{p,1}\) is continuously embedded in the set of bounded continuous functions (going to zero at infinity if, additionally, \(p<\infty \)).

Proposition 3

Let \(1\le p,r,r_{1},r_{2}\le \infty \).

  • Complex interpolation: If \(f\in {\dot{B}}^{s_{1}}_{p,r_{1}}\cap {\dot{B}}^{s_{2}}_{p,r_{2}}\) and \(s_{1}\ne s_{2}\), then \(f\in {\dot{B}}_{p,r}^{\rho s_{1}+(1-\rho )s_{2}}\) for all \(\rho \in (0,1)\) and

    $$\begin{aligned} \Vert f\Vert _{{\dot{B}}_{p,r}^{\rho s_{1}+(1-\rho )s_{2}}}\le \Vert f\Vert _{{\dot{B}}_{p,r_{1}}^{s_{1}}}^{\rho } \Vert f\Vert _{{\dot{B}}_{p,r_{2}}^{s_{2}}}^{1-\rho } \ \ \hbox {with} \ \ \frac{1}{r}=\frac{\rho }{r_{2}}+\frac{1-\rho }{r_{2}}. \end{aligned}$$
  • Real interpolation: If \(f\in {\dot{B}}^{s_{1}}_{p,\infty }\cap {\dot{B}}^{s_{2}}_{p,\infty }\) and \(s_{1}<s_{2}\), then \(f\in {\dot{B}}_{p,1}^{\rho s_{1}+(1-\rho )s_{2}}\) for all \(\rho \in (0,1)\) and

    $$\begin{aligned} \Vert f\Vert _{{\dot{B}}_{p,1}^{\rho s_{1}+(1-\rho )s_{2}}}\le \frac{C}{\rho (1-\rho )(s_{2}-s_{1})}\Vert f\Vert _{{\dot{B}}_{p,\infty }^{s_{1}}}^{\rho } \Vert f\Vert _{{\dot{B}}_{p,\infty }^{s_{2}}}^{1-\rho }. \end{aligned}$$

Proposition 4

  • Scaling invariance: For any \(s\in {\mathbb {R}}\) and \((p,r)\in [1,\infty ]^{2}\), there exists a constant \(C=C(s,p,r,d)\) such that for all \(\lambda >0\) and \(u\in {\dot{B}}_{p,r}^{s}\), we have

    $$\begin{aligned} C^{-1}\lambda ^{s-\frac{d}{p}}\Vert f\Vert _{{\dot{B}}_{p,r}^{s}} \le \Vert f(\lambda \cdot )\Vert _{{\dot{B}}_{p,r}^{s}}\le C\lambda ^{s-\frac{d}{p}}\Vert f\Vert _{{\dot{B}}_{p,r}^{s}}. \end{aligned}$$
  • Completeness: \({\dot{B}}^{s}_{p,r}\) is a Banach space whenever \( s<\frac{d}{p}\) or \(s\le \frac{d}{p}\) and \(r=1\).

  • Action of Fourier multipliers: If F is a smooth homogeneous of degree m function on \({\mathbb {R}}^{d}\backslash \{0\}\) then

    $$\begin{aligned} F(D):{\dot{B}}_{p,r}^{s}\rightarrow {\dot{B}}_{p,r}^{s-m}. \end{aligned}$$

    In particular, the gradient operator maps \({\dot{B}}^{s}_{p,r}\) to \({\dot{B}}^{s-1}_{p,r}\).

In addition, let us recall the following classical Bernstein inequality:

$$\begin{aligned} \Vert D^{k}f\Vert _{L^{b}} \le C^{1+k} \lambda ^{k+d(\frac{1}{a}-\frac{1}{b})}\Vert f\Vert _{L^{a}} \end{aligned}$$
(A4)

that holds for all function f such that \(\mathrm {Supp}\,{\mathcal {F}}u\subset \{\xi \in {\mathbb {R}}^{d}: |\xi |\le R\lambda \}\) for some \(R>0\) and \(\lambda >0\), if \(k\in {\mathbb {N}}\) and \(1\le a\le b\le \infty \).

More generally, if we assume f to satisfy \(\mathrm {Supp}\,{\mathcal {F}}f\subset \{\xi \in {\mathbb {R}}^{d}: R_{1}\lambda \le |\xi |\le R_{2}\lambda \}\) for some \(0<R_{1}<R_{2}\) and \(\lambda >0\), then for any smooth homogeneous of degree m function A on \({\mathbb {R}}^{d}\setminus \{0\}\) and \(1\le a\le \infty ,\) we have (see e.g. Lemma 2.2 in [51]):

$$\begin{aligned} \Vert A(D)f\Vert _{L^{a}}\lesssim \lambda ^{m}\Vert f\Vert _{L^{a}}. \end{aligned}$$
(A5)

An obvious consequence of (A4) and (A5) is that \(\Vert D^{k}f\Vert _{{\dot{B}}^{s}_{p, r}}\thickapprox \Vert f\Vert _{{\dot{B}}^{s+k}_{p, r}}\) for all \(k\in {\mathbb {N}}.\)

The classical product estimates are used repeatedly in bounding bilinear terms.

Proposition 5

([51, 54]). Let \(1\le p,r\le \infty \). Then we have the following:

  1. (a)

    If \(s>0\), then

    $$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s}_{p,r}}\lesssim \Vert f\Vert _{L^{\infty }} \Vert g\Vert _{{\dot{B}}^{s}_{p,r}} +\Vert g\Vert _{L^{\infty }} \Vert f\Vert _{{\dot{B}}^{s}_{p,r}}. \end{aligned}$$
  2. (b)

    If \(s_{1}, s_{2}\le \frac{d}{p}\) and \(s_{1}+s_{2}>d\max (0,\frac{2}{p}-1)\), then

    $$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s_{1}+s_{2}-\frac{d}{p}}_{p,1}}\lesssim \Vert f\Vert _{{\dot{B}}^{s_{1}}_{p,1}} \Vert g\Vert _{{\dot{B}}^{s_{2}}_{p,1}}. \end{aligned}$$
  3. (c)

    If \(s_{1}\le \frac{d}{p}, s_{2}<\frac{d}{p}\) and \(s_{1}+s_{2}\ge d\max (0,\frac{2}{p}-1)\), then

    $$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s_{1}+s_{2}-\frac{d}{p}}_{p,\infty }}\lesssim \Vert f\Vert _{{\dot{B}}^{s_{1}}_{p,1}} \Vert g\Vert _{{\dot{B}}^{s_{2}}_{p,\infty }}. \end{aligned}$$

To match different Lebesgue norms at low frequencies and high frequencies, we need to present some non classical product estimates in the \(L^{p}\) framework. Precisely,

Proposition 6

([41, 44, 45]). Let the real numbers \(s_{1},\) \(s_{2},\) \(p_1\) and \(p_2\) be such that

$$\begin{aligned} s_{1}+s_{2}>0,\ \ s_{1}\le \frac{d}{p_{1}}, \ \ s_{2}\le \frac{d}{p_{2}}, \ \ s_{1}\ge s_{2} \ \ \hbox {and} \ \ \frac{1}{p_{1}}+\frac{1}{p_{2}}\le 1. \end{aligned}$$

Then we have

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s_{2}}_{q,1}}\lesssim \Vert f\Vert _{{\dot{B}}^{s_{1}}_{p_{1},1}}\Vert g\Vert _{{\dot{B}}^{s_{2}}_{p_{2},1}} \ \ \hbox {with} \ \ \frac{1}{q}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{s_{1}}{d}. \end{aligned}$$

Additionally, for exponents \(s>0\) and \(1\le p_{1},p_{2},q\le \infty \) satisfying

$$\begin{aligned} \frac{d}{p_{1}}+\frac{d}{p_{2}}-d\le s \le \min \left( \frac{d}{p_{1}},\frac{d}{p_{2}}\right) \ \ \hbox {and} \ \ \frac{1}{q}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{s}{d}, \end{aligned}$$

we have

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{-s}_{q,\infty }}\lesssim \Vert f\Vert _{{\dot{B}}^{s}_{p_{1},1}}\Vert g\Vert _{{\dot{B}}^{-s}_{p_{2},\infty }}. \end{aligned}$$

Together with the regularity requirement in Theorem 2, Proposition 6 can lead to the following inequalities.

Corollary 1

([41, 55]). Let \(1-\frac{d}{2}<s_{1}\le s_{0}\) and p satisfy (8). It holds that

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{-s_{1}}_{2,\infty }}\lesssim & {} \Vert f\Vert _{{\dot{B}}^{\frac{d}{p}}_{p,1}}\Vert g\Vert _{{\dot{B}}^{-s_{1}}_{2,1}}, \end{aligned}$$
(A6)
$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{\frac{d}{p}-\frac{d}{2}-s_{1}}_{2,\infty }}\lesssim & {} \Vert f\Vert _{{\dot{B}}^{\frac{d}{p}-\frac{d}{2}-s_{1}}_{p,1}}\Vert g\Vert _{{\dot{B}}^{\frac{d}{p}}_{2,1}}, \end{aligned}$$
(A7)
$$\begin{aligned} \Vert fg\Vert ^{\ell }_{{\dot{B}}^{-s_{0}}_{2,\infty }}\lesssim & {} \Vert f\Vert _{{\dot{B}}^{\frac{d}{p}-1}_{p,1}}\Vert g\Vert _{{\dot{B}}^{1-\frac{d}{p}}_{p,1}}. \end{aligned}$$
(A8)

Indeed, note that if \(s_{1}=s_{0}\), then we get from (A7) that

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{-\frac{d}{p}}_{2,\infty }} \lesssim \Vert f\Vert _{{\dot{B}}^{-\frac{d}{p}}_{p,1}}\Vert g\Vert _{{\dot{B}}^{\frac{d}{p}}_{2,1}}. \end{aligned}$$
(A9)

In addition, the third estimate in Proposition 5 can be also extended to the non classical form (see [48]).

Proposition 7

Let the real number \(s_{1}\), \(s_{2}\), \(p_{1}\) and \(p_{2}\) be such that

$$\begin{aligned} s_{1}+s_{2}\ge 0, \ s_{1}\le \frac{d}{p_{1}}, \ s_{2}<\min \left( \frac{d}{p_{1}},\ \frac{d}{p_{2}}\right) \ \ \hbox {and} \ \ \frac{1}{p_{1}}+\frac{1}{p_{2}}\le 1. \end{aligned}$$

Then it holds that

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{s_{1}+s_{2}-\frac{d}{p_{1}}}_{p_{2},\infty }}\lesssim \Vert f\Vert _{{\dot{B}}^{s_{1}}_{p_{1},1}} \Vert g\Vert _{{\dot{B}}^{s_{2}}_{p_{2},\infty }}. \end{aligned}$$

As a direct consequence, the following product estimates in the pure energy argument with interpolation will be employed.

Corollary 2

Let \(1-\frac{d}{2}<s_{1}\le s_{0}\) and p satisfy (8). It holds that

$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{-s_{1}}_{2,\infty }}\lesssim & {} \Vert f\Vert _{{\dot{B}}^{\frac{d}{p}}_{p,1}} \Vert g\Vert _{{\dot{B}}^{-s_{1}}_{2,\infty }}, \end{aligned}$$
(A10)
$$\begin{aligned} \Vert fg\Vert _{{\dot{B}}^{\frac{d}{p}-\frac{d}{2}-s_{1}}_{2,\infty }}\lesssim & {} \Vert f\Vert _{{\dot{B}}^{\frac{d}{p}-1}_{p,1}}\Vert g\Vert _{{\dot{B}}^{\frac{d}{p}-\frac{d}{2}+1-s_{1}}_{2,\infty }}. \end{aligned}$$
(A11)

System (7) also involves compositions of functions and they are bounded in terms of the following conclusion.

Proposition 8

([41, 44, 51, 55]). Let \(F:\mathbb {R}\rightarrow {\mathbb {R}}\) be smooth with \(F(0)=0\). For all \(1\le p,r\le \infty \) and \(s>0\) we have \(F(u)\in {\dot{B}}^{s}_{p,r}\cap L^{\infty }\) for \(u\in {\dot{B}}^{s}_{p,r}\cap L^{\infty }\), and

$$\begin{aligned} \Vert F(u)\Vert _{\dot{B}^{s}_{p,r}}\le C\Vert u\Vert _{\dot{B}^{s}_{p,r}} \end{aligned}$$

with C depending only on \(\Vert u\Vert _{L^{\infty }}\), \(F'\) (and higher derivatives), s, p and d.

In the case \(s>-\min \big (\frac{d}{p},\frac{d}{p'}\big )\) then \(u\in {\dot{B}}^{s}_{p,r}\cap {\dot{B}}^{\frac{d}{p}}_{p,1}\) implies that \(F(u)\in {\dot{B}}^{s}_{p,r}\cap {\dot{B}}^{\frac{d}{p}}_{p,1}\), and we have

$$\begin{aligned} \Vert F(u)\Vert _{\dot{B}^{s}_{p,r}}\le C\left( 1+\Vert u\Vert _{{\dot{B}}^{\frac{d}{p}}_{p,1}}\right) \Vert u\Vert _{{\dot{B}}^{s}_{p,r}}. \end{aligned}$$

Finally, we end this section with the endpoint maximal regularity property of the heat equation which considers complex diffusion coefficient. The proof is similar to the case of real coefficient. The interested reader is referred to [37] for more details.

Proposition 9

Let \(T>0\), \(s\in {\mathbb {R}}\) and \(1\le \rho _{2},p,r\le \infty \). Let u satisfy

$$\begin{aligned} \left\{ \begin{array}{lll} \partial _{t}u-\nu \Delta u=f,\\ u|_{t=0}=u_{0}, \end{array} \right. \end{aligned}$$

where \(\nu \in {\mathbb {C}}\) is a complex number with \(Re\, \nu >0\). Then, there exists a constant C depending only on d and such that for all \(\rho _{1}\in [\rho _{2},\infty ]\), one have

$$\begin{aligned} (Re\,\nu )^{\frac{1}{\rho _1}}\Vert u\Vert _{{{\tilde{L}}}_{T}^{\rho _1}\big (\dot{B}^{s+\frac{2}{\rho _1}}_{p,r}\big )}\le C \left( \Vert u_{0}\Vert _{{\dot{B}}^{s}_{p,r}}+(Re\,\nu )^{\frac{1}{\rho _{2}}-1}\Vert f\Vert _{{{\tilde{L}}}^{\rho _{2}}_{T}({\dot{B}}^{s-2+\frac{2}{\rho _{2}}}_{p,r})}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Song, Z. & Zhang, J. Large-Time Behavior of Solutions in the Critical Spaces for the Non-isentropic Compressible Navier–Stokes Equations with Capillarity. J. Math. Fluid Mech. 24, 59 (2022). https://doi.org/10.1007/s00021-022-00693-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00693-4

Keywords

Mathematics Subject Classification

Navigation