Skip to main content
Log in

Low Mach number limit of the three-dimensional full compressible Navier–Stokes–Korteweg equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we justify the low Mach number limit for the three-dimensional full compressible Navier–Stokes–Korteweg equations rigorously within the framework of smooth solution. Under the assumptions of small density and temperature perturbation, we show that for sufficiently small Mach number, the initial-value problem of the three-dimensional full compressible Navier–Stokes–Korteweg equations admits a unique smooth solution on the time interval where the smooth solution of the corresponding incompressible Navier–Stokes equations exists. Moreover, we obtain the convergence of smooth solutions for the full compressible Navier–Stokes–Korteweg equations toward those for the incompressible Navier–Stokes equations with a convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, G.B.: Diffuse-interface methods in fluid mech. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    MATH  Google Scholar 

  2. Alazard, T.: Low Mach number limit of the full Navier–Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Alazard, T.: A minicourse on the low Mach number limit. Discrete Contin. Dyn. Syst. Ser. S 1, 365–404 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bresch, D., Desjardins, B.: On the construction of approximate solutions for the \(2D\) viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pures Appl. (9) 86, 362–368 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Bresch, D., Desjardins, B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. (9) 87, 57–90 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication and shallow water systems. Commun. Partial Differ. Equ. 28, 843–868 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Cheng, B.: Improved accuracy of incompressible approximation of compressible Euler equations. SIAM J. Math. Anal. 46, 3838–3864 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Z.-Z., Chai, X.-J., Dong, B.-Q., Zhao, H.-J.: Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data. J. Differ. Equ. 259, 4376–4411 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Charve, F., Haspot, B.: Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system. SIMA J. Math. Anal. 45, 469–494 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1998)

    Google Scholar 

  11. Cai, H., Tan, Z., Xu, Q.-J.: Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinet. Relat. Model. 8, 29–51 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Z.-Z., Zhao, H.-J.: Existence and nonlinear stability of stationary solutions to the full compressible Navier–Stokes–Korteweg system. J. Math. Pures Appl. 101, 330–371 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Danchin, R.: Low Mach number limit for viscous compressible flows. Math. Model. Numer. Anal. 39, 459–475 (2005)

    MathSciNet  Google Scholar 

  14. Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non linéaire 18, 97–133 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Dunn, J.E., Serrin, J.: On the thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)

    MATH  Google Scholar 

  16. Germain, P., LeFloch, P.G.: Finite energy method for compressible fluids: the Navier–Stokes–Korteweg model. Commun. Pure Appl. Math. 69, 3–61 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Haspot, B.: Existence of strong solutions for nonisothermal Korteweg system. Annales Mathématiques Blaise Pascal 16, 431–481 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Haspot, B.: Existence of global strong solution for the compressible Navier–Stokes system and the Korteweg system in two-dimension. Methods Appl. Anal. 20, 141–164 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13, 223–249 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Hattori, H., Li, D.: The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J. Partial Differ. Equ. 9, 323–342 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Hattori, H., Li, D.: Golobal solutions of a high dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Hou, X.-F., Peng, H.-Y., Zhu, C.-J.: Global well-posedness of the \(3D\) non-isothermal compressible fluid model of Korteweg type. Nonlinear Anal. Real World Appl. 43, 18–53 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Hou, X.-F., Yao, L., Zhu, C.-J.: Vanishing capillarity limit of the compressible non-estropic Navier–Stokes–Korteweg system to the Navier–Stokes equations. J. Math. Anal. Appl. 448, 421–446 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, S., Ju, Q.-C., Li, F.-C.: Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity 25, 1351–1365 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Jiang, S., Ju, Q.-C., Li, F.-C., Xin, Z.-P.: Low Mach number limit for the full magnetohydrodynamic equations with general initial data. Adv. Math. 259, 384–420 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Kato, T.: Nonstationary flow of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)

    MATH  Google Scholar 

  27. Korteweg, D.J.: Sur la forme que prennent les équations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densité. Arch. Neerl. Sci. Exactes Nat. Ser. II(6), 1–24 (1901)

    MATH  Google Scholar 

  28. Kotschote, M.: Strong well-posedness for a Korteweg type for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12, 473–483 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 63, 21–51 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Klainerman, S., Majda, A.: Singular limits of quasilinear hydrobolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    MATH  Google Scholar 

  31. Li, Y.-P., Liao, J.: Existence of strong solutions to the stationary compressible Navier–Stokes–Korteweg system with large external force. Nonlinear Anal. Real World Appl. 47, 204–223 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Lions, P.L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Li, Y.-P., Yong, W.-A.: Zero Mach number limit of the compressible Navier–Stokes–Korteweg equations. Commun. Math. Sci. 14, 233–247 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations. III. Elsevier/North-Holland, Amsterdam (2006)

    Google Scholar 

  35. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    MATH  Google Scholar 

  36. McGrath, F.J.: Nonstationary plane flow of viscous and ideal fluds. Arch. Ration. Mech. Anal. 27, 229–348 (1968)

    Google Scholar 

  37. Schochet, S.: The mathematical theory of low Mach number flows. Math. Model. Numer. Anal. 39, 441–458 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Van der Waals, J.D.: Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung. Z. Phys. Chem. 13, 657–725 (1894)

    Google Scholar 

  39. Yong, W.-A.: Basic aspects of hyperbolic relaxation systems. In: Freistuhler, H., Szepessy, A. (eds.) Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations Applications, 47, pp. 259–305. Birkhauser Boston, Boston (2001)

    Google Scholar 

  40. Yong, W.-A.: Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155, 89–132 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, X., Tan, Z.: Decay estimates of the non-isentropic compressible fluid models of Korteweg type in \(\mathbb{R}^3\). Commun. Math. Sci. 12, 1437–1456 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous referees for valuable comments which greatly improved our original manuscript. The research is supported in partial by the National Science Foundation of China (Grant No. 11671134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, K., Li, Y. Low Mach number limit of the three-dimensional full compressible Navier–Stokes–Korteweg equations. Z. Angew. Math. Phys. 70, 169 (2019). https://doi.org/10.1007/s00033-019-1215-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1215-y

Keywords

Mathematics Subject Classification

Navigation