Skip to main content
Log in

Nonlinear stability of entropy waves for the Euler equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this article, we consider a class of the contact discontinuity for the full compressible Euler equations, namely the entropy wave, where the velocity is continuous across the interface while the density and the entropy can have jumps. The nonlinear stability of entropy waves is a longstanding open problem in multi-dimensional hyperbolic conservation laws. The rigorous treatments are challenging due to the characteristic discontinuity nature of the problem (G.-Q. Chen and Y.-G. Wang in Nonlinear partial differential equations, Volume 7 of Abel Symp.(2012)). In this article, we discover that the Taylor sign condition plays an essential role in the nonlinear stability of entropy waves. By deriving the evolution equation of the interface in the Eulerian coordinates, we relate the Taylor sign condition to the hyperbolicity of this evolution equation, which reveals a stability condition of the entropy wave. With the optimal regularity estimates of the interface, we can derive the a priori estimates without loss of regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our manuscript has no associated data.

References

  1. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  MathSciNet  Google Scholar 

  2. Alinhac, S.: Existence d’ondes de raréfaction pour des systémes quasi-linéaires hyperboliques multidimensionnels [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Comm. Partial Differ. Equ. 14(2), 173–230 (1989)

    Article  Google Scholar 

  3. Alinhac, S.: Unicité d’ondes de raréfaction pour des systémes quasi-linéaires hyperboliques multidimensionnels [Uniqueness of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Indiana Univ. Math. J. 38(2), 345–363 (1989)

    Article  MathSciNet  Google Scholar 

  4. Benzoni-Gavage, S., Serre, D.: Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. First-order systems and applications

  5. Blokhin, A., Trakhinin, Y.: Stability of strong discontinuities in fluids and MHD, pages 545–652. North-Holland, Amsterdam, (2002)

  6. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chen, G.-Q., Wang, Y.-G.: Characteristic discontinuities and free boundary problems for hyperbolic conservation laws. In Nonlinear partial differential equations, volume 7 of Abel Symp., pages 53–81. Springer, Heidelberg (2012)

  8. Cheng, C.H.A., Shkoller, S.: Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains. J. Math. Fluid Mech. 19(3), 375–422 (2017)

    Article  MathSciNet  Google Scholar 

  9. Coulombel, J.-F., Morando, A.: Stability of contact discontinuities for the nonisentropic Euler equations. Ann. Univ. Ferrara Sez. VII (N.S.) 50(1), 79–90 (2004)

    Article  MathSciNet  Google Scholar 

  10. Coulombel, J.-F., Morando, A., Secchi, P., Trebeschi, P.: A priori estimates for 3D incompressible current-vortex sheets. Comm. Math. Phys. 311(1), 247–275 (2012)

    Article  MathSciNet  Google Scholar 

  11. Coulombel, J.-F., Secchi, P.: The stability of compressible vortex sheets in two space dimensions. Indiana Univ. Math. J. 53(4), 941–1012 (2004)

    Article  MathSciNet  Google Scholar 

  12. Coulombel, J.-F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Éc. Norm. Supér. (4) 41(1), 85–139 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 4th edn. Springer-Verlag, Berlin (2016)

    Google Scholar 

  14. Ebin, D.G.: Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids. Comm. Partial Differ. Equ. 13(10), 1265–1295 (1988)

    Article  MathSciNet  Google Scholar 

  15. Fejer, J.A., Miles, J.W.: On the stability of a plane vortex sheet with respect to three-dimensional disturbances. J. Fluid Mech. 15, 335–336 (1963)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Tice, I.: Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ. Math. J. 60(2), 677–711 (2011)

    Article  MathSciNet  Google Scholar 

  17. Huang, F., Matsumura, A., Xin, Z.: Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 179(1), 55–77 (2006)

    Article  MathSciNet  Google Scholar 

  18. Huang, F., Xin, Z., Yang, T.: Contact discontinuity with general perturbations for gas motions. Adv. Math. 219(4), 1246–1297 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kang, M.-J., Vasseur, A.F., Wang, Y.: Uniqueness of a planar contact discontinuity for 3D compressible Euler system in a class of zero dissipation limits from Navier-Stokes-Fourier system. Comm. Math. Phys. 384(3), 1751–1782 (2021)

    Article  MathSciNet  Google Scholar 

  20. Landau, L. D., Lifshitz, E. M.: Electrodynamics of continuous media. Course of Theoretical Physics, Vol. 8. Translated from the Russian by J. B. Sykes and J. S. Bell. Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass (1960)

  21. Lannes, D.: The water waves problem. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

    Google Scholar 

  22. Li, C., Li, H.: Well-posedness of the two-phase flow problem in incompressible MHD. Discrete Contin. Dyn. Syst. 41(12), 5609–5632 (2021)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Li, H.: Well-posedness of the free boundary problem in incompressible MHD with surface tension. Calc. Var. Part. Differ. Equ. 61, 191 (2022)

    Article  MathSciNet  Google Scholar 

  24. Majda, A.: The existence of multidimensional shock fronts. Mem. Amer. Math. Soc., 43(281):v+93 (1983)

  25. Majda, A.: The stability of multidimensional shock fronts. Mem. Amer. Math. Soc., 41(275):iv+95, (1983)

  26. Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5. Edizioni della Normale, Pisa (2008)

    Google Scholar 

  27. Miles, J.W.: On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4, 538–552 (1958)

    Article  MathSciNet  Google Scholar 

  28. Morando, A., Trakhinin, Y., Trebeschi, P.: Stability of incompressible current-vortex sheets. J. Math. Anal. Appl. 347(2), 502–520 (2008)

    Article  MathSciNet  Google Scholar 

  29. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized problem for MHD contact discontinuities. J. Differ. Equ. 258(7), 2531–2571 (2015)

    Article  MathSciNet  Google Scholar 

  30. Morando, A., Trakhinin, Y., Trebeschi, P.: Local existence of MHD contact discontinuities. Arch. Ration. Mech. Anal. 228(2), 691–742 (2018)

    Article  MathSciNet  Google Scholar 

  31. Morando, A., Trebeschi, P.: Two-dimensional vortex sheets for the nonisentropic Euler equations: linear stability. J. Hyperbolic Differ. Equ. 5(3), 487–518 (2008)

    Article  MathSciNet  Google Scholar 

  32. Morando, A., Trebeschi, P., Wang, T.: Two-dimensional vortex sheets for the nonisentropic Euler equations: nonlinear stability. J. Differ. Equ. 266(9), 5397–5430 (2019)

    Article  MathSciNet  Google Scholar 

  33. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Comm. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  Google Scholar 

  34. Sun, Y., Wang, W., Zhang, Z.: Nonlinear stability of the current-vortex sheet to the incompressible MHD equations. Comm. Pure Appl. Math. 71(2), 356–403 (2018)

    Article  MathSciNet  Google Scholar 

  35. Trakhinin, Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177(3), 331–366 (2005)

    Article  MathSciNet  Google Scholar 

  36. Trakhinin, Y.: On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem. Math. Methods Appl. Sci. 28(8), 917–945 (2005)

    Article  MathSciNet  Google Scholar 

  37. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310 (2009)

    Article  MathSciNet  Google Scholar 

  38. Trakhinin, Y., Wang, T.: Nonlinear stability of MHD contact discontinuities with surface tension. Arch. Ration. Mech. Anal. 243(2), 1091–1149 (2022)

    Article  MathSciNet  Google Scholar 

  39. Wang, W., Zhang, Z., Zhao, W.: Well-posedness of the free boundary problem for the compressible Euler equations and the incompressible limit. Commun. Math. Anal. Appl. 1(3), 410–456 (2022)

    MathSciNet  Google Scholar 

  40. Wang, Y., Xin, Z.: Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics. Comm. Pure Appl. Math. 77(1), 583–629 (2024)

  41. Wang, Y., Xin, Z.: Global well-posedness of free interface problems for the incompressible inviscid resistive MHD. Comm. Math. Phys. 388(3), 1323–1401 (2021)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y.-G., Yu, F.: Stabilization effect of magnetic fields on two-dimensional compressible current-vortex sheets. Arch. Ration. Mech. Anal. 208(2), 341–389 (2013)

    Article  MathSciNet  Google Scholar 

  43. Zhao, W.: Local well-posedness of the plasma-vacuum interface problem for the ideal incompressible MHD. J. Differ. Equ. 381, 151–184 (2024)

Download references

Acknowledgements

The authors would like to thank the referees for carefully going through the paper and for the helpful suggestions for improving the presentation.

Funding

W. Wang is supported by NSF of China (Nos.11931010, 12271476). Z. Zhang is supported by NSF of China (Nos. 12171010, 12288101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Elliptic estimates

For the one-phase elliptic system

$$\begin{aligned} {\left\{ \begin{array}{ll} \nabla \times u=\omega , \quad \nabla \cdot u=\sigma , &{} \text {in } \Omega _f^-, \\ u\cdot N=\theta , &{} \text {on } \Gamma _f, \\ u\cdot n_-=0, \quad \int _{{\mathbb {T}}^2}u_j\textrm{d}{\overline{x}}=\alpha _j \,(j=1,\,2), &{} \text {on } \Gamma ^-, \\ \end{array}\right. } \end{aligned}$$
(A.1)

we have the following existence result given by Proposition 5.1 in [34] (see also [8, 33]):

Lemma A.1

Assume that \( f\in H^{\kappa -\frac{1}{2}}({\mathbb {T}}^2) \) with \( \kappa >\frac{5}{2} \). For \( s\in [2,\,\kappa ] \), let \( (\omega ,\,\sigma )\in H^{s-2}(\Omega _f^-) \) and \( \theta \in H^{s-\frac{3}{2}}({\mathbb {T}}^2) \) be such that

$$\begin{aligned}{} & {} \int _{\Omega _f^-}\sigma \textrm{d}x =\int _{{\mathbb {T}}^2}\theta \textrm{d}{\overline{x}},\\{} & {} \nabla \cdot \omega =0, \,\text {in } \Omega _f^-, \quad \int _{\Gamma ^-}\omega _3\textrm{d}{\overline{x}}=0. \end{aligned}$$

Then there exists a unique \( u\in H^{s-1}(\Omega _f^-) \) to the system (A.1) such that

$$\begin{aligned} \big \Vert u\big \Vert _{H^{s-1}(\Omega _f^-)}\le & {} C(\big \Vert f\big \Vert _{H^{\kappa -\frac{1}{2}}}) \Big \{\big \Vert (\omega ,\,\sigma )\big \Vert _{H^{s-2}(\Omega _f^-)} +\big \Vert \theta \big \Vert _{H^{s-\frac{3}{2}}(\Gamma _f)} \nonumber \\{} & {} +|\alpha _1|+|\alpha _2|\Big \}. \end{aligned}$$
(A.2)

The regularity of the solution of the one-phase elliptic system (A.1) was improved in [8] (see also [39]) by using tangential derivatives for the boundary condition on the surface \( \Gamma _f \):

Lemma A.2

Assume that \( f\in H^{\kappa -\frac{1}{2}}({\mathbb {T}}^2) \) with \( \kappa >\frac{5}{2} \). For \( s\in [2,\,\kappa ] \), there holds that

$$\begin{aligned} \begin{aligned} \big \Vert u\big \Vert _{H^{s}(\Omega _f^-)} \le&C(\big \Vert f\big \Vert _{H^{\kappa -\frac{1}{2}}})\Big \{\big \Vert \nabla \times u\big \Vert _{H^{s-1}(\Omega _f^-)} +\big \Vert \nabla \cdot u\big \Vert _{H^{s-1}(\Omega _f^-)} \\&\quad \quad +\sum _{i=1,2}\big \Vert {\overline{\partial }}_i u\cdot N \big \Vert _{H^{s-\frac{3}{2}}(\Gamma _f)} +\big \Vert u\big \Vert _{L^2(\Omega _f^-)}\Big \}. \end{aligned} \end{aligned}$$
(A.3)

Clearly, these two results also hold for the one-phase elliptic systems in \( \Omega ^+_f \) in a similar fashion.

Paradifferential operators and commutator estimates

In this appendix, we shall recall some basic facts on paradifferential operators from [26].

We first introduce the symbols with limited spatial smoothness. Let \( W^{k,\infty }({\mathbb {R}}^d) \) be the usual Sobolev spaces for \( k\in {\mathbb {N}} \).

Definition B.1

Given \( \mu \in [0,\,1] \) and \( m\in {\mathbb {R}}\), we denote by \( \Gamma ^m_{\mu }({\mathbb {R}}^d) \) the space of locally bounded functions \( a(x,\,\xi ) \) on \( {\mathbb {R}}^d\times {\mathbb {R}}^d\backslash \{0\} \), which are \( C^{\infty } \) with respect to \( \xi \) for \( \xi \ne 0 \) such that, for all \( \alpha \in {\mathbb {N}}^d \) and \( \xi \ne 0 \), the function \( x\rightarrow \partial _{\xi }^{\alpha }a(x,\,\xi ) \) belongs to \( W^{\mu ,\infty } \) and there exists a constant \( C_{\alpha } \) such that

$$\begin{aligned} \big \Vert \partial _{\xi }^{\alpha }a(\cdot ,\,\xi )\big \Vert _{W^{\mu ,\infty }} \le C_{\alpha }(1+|\xi |)^{m-|\alpha |}, \quad \quad \forall \,|\xi |\ge \frac{1}{2}. \end{aligned}$$

The seminorm of the symbol is defined as

$$\begin{aligned} M_{\mu }^m(a):=\sup _{|\alpha |\le \frac{3d}{2}+1+\mu } \sup _{|\xi |\ge \frac{1}{2}} \big \Vert (1+|\xi |)^{-m+|\alpha |}\partial _{\xi }^{\alpha }a(\cdot ,\,\xi )\big \Vert _{W^{\mu ,\infty }} \end{aligned}$$

If a is a function independent of \( \xi \), then

$$\begin{aligned} M^0_{\mu }(a)=\big \Vert a\big \Vert _{W^{\mu ,\infty }}. \end{aligned}$$

Definition B.2

Given a symbol a, the paradifferential operator \( T_a \) is defined by

$$\begin{aligned} \widehat{T_au}(\xi ):=(2\pi )^{-d}\int _{{\mathbb {R}}^d} \chi (\xi -\eta ,\,\eta ) \widehat{a}(\xi -\eta ,\,\eta ) \psi (\eta )\widehat{u}(\eta )\textrm{d}\eta , \end{aligned}$$
(B.1)

where \( \widehat{a} \) is the Fourier transform of a with respect to the first variable. \( \chi (\xi ,\,\eta )\in C^{\infty }({\mathbb {R}}^d\times {\mathbb {R}}^d) \) is an admissible cutoff function, that is, there exist \( 0<\varepsilon _1<\varepsilon _2 \) such that

$$\begin{aligned} \chi (\xi ,\,\eta )=1 \quad \text {for } |\xi |\le \varepsilon _1|\eta |, \quad \quad \chi (\xi ,\,\eta )=0 \quad \text {for } |\xi |\ge \varepsilon _2|\eta |, \end{aligned}$$

and

$$\begin{aligned} |\partial _{\xi }^{\alpha }\partial _{\eta }^{\beta }\chi (\xi ,\,\eta )| \le C_{\alpha ,\beta } (1+|\eta |)^{-|\alpha |-|\beta |} \quad \text {for } (\xi ,\,\eta )\in {\mathbb {R}}^d\times {\mathbb {R}}^d. \end{aligned}$$

The cutoff function \( \psi (\eta )\in C^{\infty }({\mathbb {R}}^d) \) satisfies

$$\begin{aligned} \psi (\eta )=0 \quad \text {for } |\eta |\le 1, \quad \quad \psi (\eta )=1 \quad \text {for } |\eta |\ge 2. \end{aligned}$$

The admissible cutoff function \( \chi (\xi ,\,\eta ) \) can be chosen as

$$\begin{aligned} \chi (\xi ,\,\eta )=\sum _{k=0}^{\infty } \zeta _{k-3}(\xi )\varphi (\eta ), \end{aligned}$$

where \( \zeta (\xi )=1 \) for \( |\xi |\le 1.1 \), \( \zeta (\xi )=0 \) for \( |\xi |\ge 1.9 \), and

$$\begin{aligned} {\left\{ \begin{array}{ll} \zeta _k(\xi )=\zeta (2^{-k}\xi ) &{} \text {for } k\in {\mathbb {Z}}, \\ \varphi _0=\zeta , \quad \varphi _k=\zeta _k-\zeta _{k-1} &{} \text {for } k\ge 1. \end{array}\right. } \end{aligned}$$

We also introduce the Littlewood-Paley operators \( \Delta _k,\,S_k \) defined as

$$\begin{aligned} \Delta _k u= & {} {\mathcal {F}}^{-1}(\varphi _k\widehat{u}) \quad \text {for } k\ge 0, \quad \quad \Delta _k u=0 \quad \text {for } k<0,\\ S_ku= & {} \sum _{l\le k}\Delta _lu \quad \text {for } k\in {\mathbb {Z}}. \end{aligned}$$

When the symbol a depends only on the first variable x in \( T_au \), we take \( \psi =1 \) in (B.1). Then \( T_au \) is just usual Bony’s paraproduct defined as

$$\begin{aligned} T_au=\sum _{k=0}S_{k-3}a \Delta _ku. \end{aligned}$$
(B.2)

We have the following Bony’s paraproduct decomposition:

$$\begin{aligned} au=T_au+T_ua+R(a,\,u), \end{aligned}$$
(B.3)

where the remainder term \( R(a,\,u) \) is

$$\begin{aligned} R(a,\,u)=\sum _{|k-l|\le 2}\Delta _ka\Delta _lu. \end{aligned}$$

Lemma B.3

There holds that

  1. (1)

    If \( s\in {\mathbb {R}}\) and \( \sigma <\frac{d}{2} \), then

    $$\begin{aligned} \big \Vert T_au\big \Vert _{H^s} \lesssim \min \{ \big \Vert a\big \Vert _{L^{\infty }}\big \Vert u\big \Vert _{H^s}, \, \big \Vert a\big \Vert _{H^{\sigma }}\big \Vert u\big \Vert _{H^{s+\frac{d}{2}-\sigma }}, \, \big \Vert a\big \Vert _{H^{\frac{d}{2}}}\big \Vert u\big \Vert _{H^{s+}}\}. \end{aligned}$$
  2. (2)

    If \( s>0 \) and \( s_1,\,s_2\in {\mathbb {R}}\) with \( s_1+s_2=s+\frac{d}{2} \), then

    $$\begin{aligned} \big \Vert R(a,\,u)\big \Vert _{H^s} \lesssim \big \Vert a\big \Vert _{H^{s_1}}\big \Vert u\big \Vert _{H^{s_2}}. \end{aligned}$$
  3. (3)

    If \( s>0 \), \( s_1\ge s \), \( s_2\ge s \) and \( s_1+s_2=s+\frac{d}{2} \), then

    $$\begin{aligned} \big \Vert au\big \Vert _{H^{s}} \lesssim \big \Vert a\big \Vert _{H^{s_1}}\big \Vert u\big \Vert _{H^{s_2}}. \end{aligned}$$
    (B.4)

There is also the symbolic calculus of paradifferential operator in Sobolev spaces.

Lemma B.4

Let \( m,\,m'\in {\mathbb {R}}\).

  1. (1)

    If \( a\in \Gamma ^m_0({\mathbb {R}}^d) \), then for any \( s\in {\mathbb {R}}\),

    $$\begin{aligned} \big \Vert T_a\big \Vert _{H^s\rightarrow H^{s-m}} \lesssim M^m_0(a). \end{aligned}$$
  2. (2)

    if \( a\in \Gamma ^m_{\rho }({\mathbb {R}}^d) \) and \( b\in \Gamma ^{m'}_{\rho }({\mathbb {R}}^d) \) for \( \rho >0 \), then for any \( s\in {\mathbb {R}}\),

    $$\begin{aligned} \big \Vert T_aT_b-T_{a\sharp b}\big \Vert _{H^s\rightarrow H^{s-m-m'+\rho }} \lesssim M^m_{\rho }(a)M^{m'}_{0}(b) +M^m_{0}(a)M^{m'}_{\rho }(b), \end{aligned}$$

    where

    $$\begin{aligned} a\sharp b=\sum _{|\alpha |<\rho } \partial _{\xi }^{\alpha }a(x,\,\xi ) D_x^{\alpha }b(x,\,\xi ), \quad \quad D_x=-\textrm{i}\partial _x. \end{aligned}$$
  3. (3)

    If \( a\in \Gamma ^m_{\rho }({\mathbb {R}}^d) \) for \( \rho \in (0,\,1] \), then for any \( s\in {\mathbb {R}}\),

    $$\begin{aligned} \big \Vert (T_a)^*-T_{a^*}\big \Vert _{H^s\rightarrow H^{s-m+\rho }} \lesssim M^m_{\rho }(a), \end{aligned}$$

    where \( (T_a)^* \) is the adjoint operator of \( T_a \) and \( a^* \) is the complex conjugate of the symbol a.

To estimate commutators, we recall a lemma from [1] (Lemma 2.15).

Lemma B.5

Consider a symbol \( p=p(t,\,x,\,\xi ) \) which is homogeneous of order m. There holds that

$$\begin{aligned} \big \Vert [T_p,\,\partial _t+T_u\cdot \nabla ]u\big \Vert _{H^m} \lesssim \Big \{M_0^m(p)\big \Vert u\big \Vert _{C^{1+}_{\star }} +M_0^m(D_t p)\Big \}\big \Vert u\big \Vert _{H^m}. \end{aligned}$$
(B.5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Z. & Zhao, W. Nonlinear stability of entropy waves for the Euler equations. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02880-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02880-2

Mathematics Subject Classification

Navigation