Skip to main content
Log in

Centromere targeting of Mis18 requires the interaction with DNA and H2A–H2B in fission yeast

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Faithful chromosome segregation during mitosis requires the correct assembly of kinetochore on the centromere. CENP-A is a variant of histone H3, which specializes the centromere region on chromatin and mediates the kinetochore assembly. The Mis18 complex plays a critical role in initiating the centromere loading of the newly-synthesized CENP-A. However, it remains unclear how Mis18 complex (spMis18, spMis16 and spMis19) is located to the centromere to license the recruitment of Cnp1CENP-A in Schizosaccharomyces pombe. We found that spMis18 directly binds to nucleosomal DNA through its extreme C-terminus and interacts with H2A–H2B dimer via the acidic region on the surface of its Yippee-like domain. Live-cell imaging confirmed that mutation of the acidic region and deletion of the extreme C-terminus significantly impairs the localization of spMis18 and Cnp1 to the centromere and delays chromosome segregation during mitosis. Our findings illustrate that the interaction of spMis18 with histone H2A–H2B and DNA plays important roles in the recruitment of spMis18 and Cnp1 to the centromere in fission yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

CCD:

Charge-coupled device

CENP:

Centromere protein

FL:

Full length

GADPH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

GST:

Glutathione S-transferase

HJURP:

Holliday junction recognition protein

IPTG:

Isopropyl 1-β-d-galactopyranoside

LB:

Luria-Bertani

M18BP1:

Mis18 binding protein 1

NCP:

Nucleosome

Ni–NTA:

Nickel–nitriloacetic acid

PAGE:

Polyacrylamide gel electrophoresis

PCR:

Polymerase chain reaction

PMSF:

Phenylmethylsulfonyl fluoride

RSF1:

Remodeling and spacing factor 1

SAD:

Single-wavelength anomalous dispersion

SEC:

Size-exclusion chromatography

MALS:

Multiangle light scattering

SDS:

Sodium dodecyl sulfate

SSRF:

Shanghai synchrotron radiation facility

TEV:

Tobacco etch virus

Tris:

Tris(hydroxymethyl)aminomethane

Trx:

Thioredoxin

WT:

Wild type

References

  1. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17(1):16–29

    Article  CAS  Google Scholar 

  2. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91(3–4):313–321

    Article  CAS  Google Scholar 

  3. Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92(4):290–296

    Article  CAS  Google Scholar 

  4. Westhorpe FG, Straight AF (2013) Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 25(3):334–340

    Article  CAS  Google Scholar 

  5. Stellfox ME, Bailey AO, Foltz DR (2013) Putting CENP-A in its place. Cell Mol Life Sci 70(3):387–406

    Article  CAS  Google Scholar 

  6. Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12(1):17–30

    Article  CAS  Google Scholar 

  7. Dunleavy EM, Roche D, Tagami H, Lacoste N, Ray-Gallet D, Nakamura Y, Daigo Y, Nakatani Y, Almouzni-Pettinotti G (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137(3):485–497

    Article  CAS  Google Scholar 

  8. Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137(3):472–484

    Article  CAS  Google Scholar 

  9. Shuaib M, Ouararhni K, Dimitrov S, Hamiche A (2010) HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres. Proc Natl Acad Sci USA 107(4):1349–1354

    Article  CAS  Google Scholar 

  10. Lagana A, Dorn JF, De Rop V, Ladouceur AM, Maddox AS, Maddox PS (2010) A small GTPase molecular switch regulates epigenetic centromere maintenance by stabilizing newly incorporated CENP-A. Nat Cell Biol 12(12):1186–1193

    Article  CAS  Google Scholar 

  11. Liu C, Mao Y (2017) Formin-mediated epigenetic maintenance of centromere identity. Small GTPases 8(4):245–250

    Article  CAS  Google Scholar 

  12. Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K (2009) Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol 185(3):397–407

    Article  CAS  Google Scholar 

  13. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30(2):328–340

    Article  CAS  Google Scholar 

  14. Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL, Hunt DF, Black BE, Foltz DR (2016) Identification of the post-translational modifications present in centromeric chromatin. Mol Cell Proteom 15(3):918–931

    Article  CAS  Google Scholar 

  15. Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y, Fujiyama A, Kimura H, Straight AF, Fukagawa T (2016) Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun 7:13465

    Article  CAS  Google Scholar 

  16. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci USA 109(6):1979–1984

    Article  CAS  Google Scholar 

  17. Dambacher S, Deng W, Hahn M, Sadic D, Frohlich J, Nuber A, Hoischen C, Diekmann S, Leonhardt H, Schotta G (2012) CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin. Nucleus 3(1):101–110

    Article  Google Scholar 

  18. Stellfox ME, Nardi IK, Knippler CM, Foltz DR (2016) Differential binding partners of the Mis18alpha/beta YIPPEE domains regulate Mis18 complex recruitment to centromeres. Cell Rep 15(10):2127–2135

    Article  CAS  Google Scholar 

  19. Hori T, Shang WH, Hara M, Ariyoshi M, Arimura Y, Fujita R, Kurumizaka H, Fukagawa T (2017) Association of M18BP1/KNL2 with CENP-A nucleosome is essential for centromere formation in non-mammalian vertebrates. Dev Cell 42(2):181–189 (e183)

    Article  CAS  Google Scholar 

  20. Moree B, Meyer CB, Fuller CJ, Straight AF (2011) CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 194(6):855–871

    Article  CAS  Google Scholar 

  21. French BT, Westhorpe FG, Limouse C, Straight AF (2017) Xenopus laevis M18BP1 directly binds existing CENP-A nucleosomes to promote centromeric chromatin assembly. Dev Cell 42(2):190–199 (e110)

    Article  CAS  Google Scholar 

  22. Hayashi T, Ebe M, Nagao K, Kokubu A, Sajiki K, Yanagida M (2014) Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex. Genes Cells Devoted Mol Cell Mech 19(7):541–554

    Article  CAS  Google Scholar 

  23. An S, Kim H, Cho US (2015) Mis16 independently recognizes histone H4 and the CENP-ACnp1-specific chaperone Scm3sp. J Mol Biol 427(20):3230–3240

    Article  CAS  Google Scholar 

  24. Subramanian L, Medina-Pritchard B, Barton R, Spiller F, Kulasegaran-Shylini R, Radaviciute G, Allshire RC, Arockia Jeyaprakash A (2016) Centromere localization and function of Mis18 requires Yippee-like domain-mediated oligomerization. EMBO Rep 17(4):496–507

    Article  CAS  Google Scholar 

  25. Wang QS, Zhang KH, Cui Y, Wang ZJ, Pan QY, Liu K, Sun B, Zhou H, Li MJ, Xu Q, Xu CY, Yu F, He JH (2018) Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nucl Sci Tech 29(5):68

    Article  Google Scholar 

  26. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(Pt 5):760–763

    Article  Google Scholar 

  27. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64(Pt 1):61–69

    Article  CAS  Google Scholar 

  28. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674

    Article  CAS  Google Scholar 

  29. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126–2132

    Article  Google Scholar 

  30. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67(Pt 4):355–367

    Article  CAS  Google Scholar 

  31. Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14(10):943–951

    Article  CAS  Google Scholar 

  32. Tran PT, Paoletti A, Chang F (2004) Imaging green fluorescent protein fusions in living fission yeast cells. Methods 33(3):220–225

    Article  CAS  Google Scholar 

  33. Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M (2004) Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118(6):715–729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamline BL17U1 of the Shanghai Synchrotron Radiation Facility of the National Facility for Protein Science in Shanghai for assistance with data collection. This work was supported by the National Key Research and Development Program of China (2017YFA0503600, 2016YFA0400903), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (31621002), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXCX004), Users with Excellence Project of Hefei Science Center CAS (2018HSC-UE001), the National Natural Science Foundation of China (U1532109, 91853133 to JZ, 31700671 to XZ), and USTC Research Funds of the Double First-Class Initiative.

Author information

Authors and Affiliations

Authors

Contributions

JZ, XZ provided the scientific direction and the overall experimental design for the studies. CF and FZ provided the experimental design for in vivo studies. MZ, XZ and CS performed the biochemical experiments. MZ carried out the in vivo biochemistry experiments. FZ and MZ constructed the yeast strains. FZ performed live-cell imaging. MZ analyzed the imaging results with the help from FZ. XN and FD provided assistance in the biochemical experiments in fission yeast. CS, CW and MW were responsible for the crystal structure studies. MZ, FZ, XZ, CF and JZ wrote the manuscript.

Corresponding authors

Correspondence to Xuan Zhang, Chuanhai Fu or Jianye Zang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zheng, F., Xiong, Y. et al. Centromere targeting of Mis18 requires the interaction with DNA and H2A–H2B in fission yeast. Cell. Mol. Life Sci. 78, 373–384 (2021). https://doi.org/10.1007/s00018-020-03502-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03502-1

Keywords

Navigation