Skip to main content

Advertisement

Log in

Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy.

Materials and methods

A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability.

Conclusion

The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ERK:

Extracellular regulated kinase

NF-κB:

Nuclear factor-kappa light chain enhancer of activated B cells

JAK–STAT:

Janus kinases signal transducer and activator of transcription proteins

MAPK:

Mitogen-activated protein kinases

P38:

P38 MAP KINASE

PPARs:

Peroxisome proliferator-activated receptors

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

AMPK:

AMP-activated protein kinase

SIRT1:

Silent mating type information regulation 2 homolog

PGC-1-alpha:

Peroxisome proliferator-activated receptor-γ

COX-2:

Cyclooxygenase2

ASK-1:

Apoptosis signal-regulating kinase-1

TNF α:

Tumor necrosis factor alpha

IL-1:

Interleukin-1

INOS:

Inducible nitric oxide synthase

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

UCP2:

Uncoupling protein 2

CCL2:

Chemokine (C–C motif) ligand 2

MnSOD:

Manganese-dependent superoxide dismutase

DNA:

Deoxyribonucleic acid

NAD:

Nicotinamide adenine dinucleotide

FOXO:

Forkhead box transcription factors

References

  1. Brown GC, Murphy MP, Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. https://doi.org/10.1042/bse0470069.

    Article  Google Scholar 

  2. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta Mol Basis Dis. 2010;1802:228–34. https://doi.org/10.1042/bse0470069.

    Article  CAS  Google Scholar 

  3. Udhayabanu T, Manole A, Rajeshwari M, Varalakshmi P, Houlden H, Ashokkumar B. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J Clin Med. 2017. https://doi.org/10.3390/jcm6050052.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zsurka G, Kunz WS. Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol. 2015;14:956–66. https://doi.org/10.1016/S1474-4422(15)00148-9.

    Article  CAS  PubMed  Google Scholar 

  5. Kovac S, Dinkova Kostova AT, Herrmann AM, Melzer N, Meuth SG, Gorji A. Metabolic and homeostatic changes in seizures and acquired epilepsy—mitochondria, calcium dynamics and reactive oxygen species. J Mol Sci. 2017;18:1935. https://doi.org/10.3390/ijms18091935.

    Article  CAS  Google Scholar 

  6. Singh S, Singh TG, Rehni AK. An insight into molecular mechanisms and novel therapeutic approaches in epileptogenesis. CNS Neurol Disord Drug Targets. 2020;19(10):750–79. https://doi.org/10.2174/1871527319666200910153827.

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Wu J, Guo R, Peng Y, Zheng W, Liu D, Song Z. Glycolysis in energy metabolism during seizures. Neural Regen Res. 2013;8:1316. https://doi.org/10.3969/j.issn.1673-5374.2013.14.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic mechanisms of seizure control. Front Cell Neurosci. 2018;12:335. https://doi.org/10.3389/fncel.2018.00335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma VK, Singh TG, Mehta V. Stressed mitochondria: A target to intrude Alzheimer’s disease. Mitochondrion. 2021;59:48–57. https://doi.org/10.1016/j.mito.2021.04.004.

    Article  CAS  PubMed  Google Scholar 

  10. McDonald T, Puchowicz M, Borges K. Impairments in oxidative glucose metabolism in epilepsy and metabolic treatments thereof. Front Cell Neurosci. 2018;12:274. https://doi.org/10.3389/fncel.2018.00274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gleichmann M, Mattson MP. Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal. 2011;14:1261–73. https://doi.org/10.1089/ars.2010.3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roganovic M, Pantovic S, Dizdarevic S. Role of the oxidative stress in the pathogenesis of epilepsy. Brain. 2019;1:3. https://doi.org/10.5152/NSN.2019.11632.

    Article  Google Scholar 

  13. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13:106–18. https://doi.org/10.1016/j.mito.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  14. Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R. Mitochondrial dysfunction in glial cells: implications for neuronal homeostasis and survival. Toxicology. 2017;391:109–15. https://doi.org/10.1016/j.tox.2017.06.011.

    Article  CAS  PubMed  Google Scholar 

  15. Meng XF, Tan L, Tan MS, Jiang T, Tan CC, Li MM, Wang HF, Yu JT. Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdala kindling-induced status epilepticus. J Neuroinflamm. 2014;11:1–2. https://doi.org/10.1186/s12974-014-0212-5.

    Article  CAS  Google Scholar 

  16. Rehni AK, Singh TG, Chand P. Amisulpride-induced seizurogenic effect: a potential role of opioid receptor-linked transduction systems. Basic Clin Pharmacol Toxicol. 2011;108(5):310–7. https://doi.org/10.1111/j.1742-7843.2010.00655.x.

    Article  CAS  PubMed  Google Scholar 

  17. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun. 2011;25:1281–9. https://doi.org/10.1016/j.bbi.2011.03.018.

    Article  CAS  PubMed  Google Scholar 

  18. Brodie MJ. Antiepileptic drug therapy the story so far. Seizure. 2010;19:650–5. https://doi.org/10.1016/j.seizure.2010.10.027.

    Article  PubMed  Google Scholar 

  19. Guimarães J, Ribeiro JA. Pharmacology of antiepileptic drugs in clinical practice. Neurologist. 2010;16:353–7. https://doi.org/10.1097/NRL.0b013e3181dba5d3.

    Article  PubMed  Google Scholar 

  20. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–5. https://doi.org/10.1038/sj.embor.7400779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugiura Y, Ugawa Y. Epilepsy and ion channels. Clin Neurol. 2016;16(57):1–8. https://doi.org/10.5692/clinicalneurol.cn-000963.

    Article  Google Scholar 

  22. Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharm Sci. 2016;12:1–9. https://doi.org/10.9734/JAMPS/2016/24441.

    Article  Google Scholar 

  23. Waldbaum S, Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr. 2010;1(42):449–55. https://doi.org/10.1007/s10863-010-9320-9.

    Article  CAS  Google Scholar 

  24. Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22:357–68. https://doi.org/10.1007/s10495-016-1296-4.

    Article  CAS  PubMed  Google Scholar 

  25. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med. 2011;270:319–26. https://doi.org/10.1111/j.1365-2796.2011.02431.x.

    Article  CAS  PubMed  Google Scholar 

  26. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflamm. 2018;15:1–2. https://doi.org/10.1186/s12974-018-1192-7.

    Article  CAS  Google Scholar 

  27. Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. Curr Pharmacol Rep. 2018. https://doi.org/10.1007/s40495-017-0117-y.

    Article  PubMed  Google Scholar 

  28. Zhang XM, Zhu J. Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol. 2011;9:388–98. https://doi.org/10.2174/157015911795596540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rehni AK, Singh TG, Kalra R, Singh N. Pharmacological inhibition of inducible nitric oxide synthase attenuates the development of seizures in mice. Nitric Oxide. 2009;21(2):120–5. https://doi.org/10.1016/j.niox.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  30. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci. 2007;30:527–35. https://doi.org/10.1016/j.tins.2007.07.007.

    Article  CAS  PubMed  Google Scholar 

  31. Scott RC. What are the effects of prolonged seizures in the brain? Epileptic Disord. 2014;16:S6-11. https://doi.org/10.1684/epd.2014.0689.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sanz P, Garcia-Gimeno MA. Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci. 2020;21:4096. https://doi.org/10.1016/j.mito.2021.03.009.

    Article  CAS  PubMed Central  Google Scholar 

  33. Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. 2021. https://doi.org/10.1016/j.mito.2021.03.009.

    Article  PubMed  Google Scholar 

  34. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res. 2016;8:4499.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Balosso S, Liu J, Bianchi ME, Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal. 2014;21:1726–40. https://doi.org/10.1089/ars.2013.5349.

    Article  CAS  PubMed  Google Scholar 

  36. Paudel YN, Shaikh M, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, Alvim MK, Othman I. HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Behav Neurosci. 2018;11(12):628. https://doi.org/10.3389/fnins.2018.00628.

    Article  Google Scholar 

  37. Moran C, Sanz-Rodriguez A, Jimenez-Pacheco A, Martinez-Villareal J, McKiernan RC, Jimenez-Mateos EM, Mooney C, Woods I, Prehn JH, Henshall DC, Engel T. Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Differ. 2013;4:e606. https://doi.org/10.1038/cddis.2013.136.

    Article  CAS  Google Scholar 

  38. Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochimica Biochim Biophys Acta Gen Subj. 2014;1840:1331–44. https://doi.org/10.1016/j.bbagen.2013.10.034.

    Article  CAS  Google Scholar 

  39. Kim SH, Yu HS, Park S, Park HG, Ahn YM, Kang UG, Kim YS. Electroconvulsive seizures induce autophagy by activating the AMPK signaling pathway in the rat frontal cortex. Int J Neuropsychopharmacol. 2020;23:42–52. https://doi.org/10.1093/ijnp/pyz055.

    Article  CAS  PubMed  Google Scholar 

  40. Peixoto CA, de Oliveira WH, da Racho Araújo SM, Nunes AK. AMPK activation: role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol. 2017;298:31–41. https://doi.org/10.1016/j.expneurol.2017.08.013.

    Article  CAS  PubMed  Google Scholar 

  41. Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem. 2017;435:149–62. https://doi.org/10.1007/s11010-017-3064-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang XM, Duan RS, Chen Z, Quezada HC, Mix E, Winblad B, Zhu J. IL-18 deficiency aggravates kainic acid-induced hippocampal neurodegeneration in C57BL/6 mice due to an overcompensation by IL-12. Exp Neurol. 2007;205:64–73. https://doi.org/10.1016/j.expneurol.2007.01.019.

    Article  CAS  PubMed  Google Scholar 

  43. Thawkar BS, Kaur G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol. 2019;326:62–74. https://doi.org/10.1016/j.jneuroim.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  44. Wang BH, Hou Q, Lu YQ, Jia MM, Qiu T, Wang XH, Zhang ZX, Jiang Y. Ketogenic diet attenuates neuronal injury via autophagy and mitochondrial pathways in pentylenetetrazol-kindled seizures. Brain Res. 2018;1678:106–15. https://doi.org/10.1016/j.brainres.2017.10.009.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 2018;103:115–24. https://doi.org/10.1016/j.molimm.2018.09.010.

    Article  CAS  PubMed  Google Scholar 

  46. Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. Ca2+-induced ROS production promotes cytochrome c release from rat liver mitochondria via MPT-dependent and MPT-independent mechanisms. Role of cardiolipin . J Biol Chem. 2004. https://doi.org/10.1074/jbc.M407500200.

    Article  PubMed  Google Scholar 

  47. Perkins G, Bossy-Wetzel E, Ellisman MH. New insights into mitochondrial structure during cell death. Exp Neurol. 2009;218:183–92. https://doi.org/10.1016/j.expneurol.2009.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chuang YC, Chen SD, Jou SB, Lin TK, Chen SF, Chen NC, Hsu CY. Sirtuin 1 regulates mitochondrial biogenesis and provides an endogenous neuroprotective mechanism against seizure-induced neuronal cell death in the hippocampus following status epilepticus. Int J Mol Sci. 2019;20:3588. https://doi.org/10.3390/ijms20143588.

    Article  CAS  PubMed Central  Google Scholar 

  49. Pallàs M, Casadesús G, Smith MA, Coto-Montes A, Pelegri C, Vilaplana J, Camins A. Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res. 2009;6:70–81. https://doi.org/10.2174/156720209787466019.

    Article  PubMed  Google Scholar 

  50. Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front physiol. 2013;4:76. https://doi.org/10.3389/fphys.2013.00076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grewal AK, Singh N, Singh TG. Neuroprotective effect of pharmacological postconditioning on cerebral ischaemia-reperfusion-induced injury in mice. J Pharm Pharmacol. 2019;71(6):956–70. https://doi.org/10.1111/jphp.13073.

    Article  CAS  PubMed  Google Scholar 

  52. Sun J, Gao X, Meng D, Xu Y, Wang X, Gu X, Guo M, Shao X, Yan H, Jiang C, Zheng Y. Antagomirs targeting mirorna-134 attenuates epilepsy in rats through regulation of oxidative stress, mitochondrial functions and autophagy. Front Pharmacol. 2017;8:524. https://doi.org/10.3389/fphar.2017.00524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chuang YC, Chen SD, Hsu CY, Chen SF, Chen NC, Jou SB. Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway Int J Mol Sci. 2019;20:998. https://doi.org/10.3390/ijms20040998.

  54. Wang SJ, Zhao XH, Chen W, Bo N, Wang XJ, Chi ZF, Wu W. Sirtuin 1 activation enhances the PGC-1α/mitochondrial anti-oxidant system pathway in status epilepticus. Mol Med. 2015;11:521–6. https://doi.org/10.3892/mmr.2014.2724.

    Article  CAS  Google Scholar 

  55. Sidorova-Darmos E, Sommer R, Eubanks JH. The role of SIRT3 in the brain under physiological and pathological conditions. Front Cell Neurosci. 2018;12:196. https://doi.org/10.3389/fncel.2018.00196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Borowicz-Reutt KK, Czuczwar SJ. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep. 2020. https://doi.org/10.1007/s43440-020-00143-w.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khan H, Tiwari P, Kaur A, Singh TG. Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol. 2021;58(8):3903–17. https://doi.org/10.1007/s12035-021-02387-w.

    Article  CAS  PubMed  Google Scholar 

  58. Cho I, Jeong KH, Zhu J, Choi YH, Cho KH, Heo K, Kim WJ. Sirtuin3 protected against neuronal damage and cycled into nucleus in status epilepticus model. Mol Neurobiol. 2019;56:4894–903. https://doi.org/10.1007/s12035-018-1399-8.

    Article  CAS  PubMed  Google Scholar 

  59. Shimada T, Takemiya T, Sugiura H, Yamagata K. Role of inflammatory mediators in the pathogenesis of epilepsy. Mediat Inflamm. 2014. https://doi.org/10.1155/2014/901902.

    Article  Google Scholar 

  60. Hixson KM, Cogswell M, Brooks-Kayal AR, Russek SJ. Evidence for a non-canonical JAK/STAT signaling pathway in the synthesis of the brain’s major ion channels and neurotransmitter receptors. BMC Genom. 2019;20:1–6. https://doi.org/10.1186/s12864-019-6033-2.

    Article  CAS  Google Scholar 

  61. Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S. The role of JAK–STAT signaling within the CNS. JAK–STAT. 2013;2: e22925. https://doi.org/10.4161/jkst.22925.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Grabenstatter HL, Del Angel YC, Carlsen J, Wempe MF, White AM, Cogswell M, Russek SJ, Brooks-Kayal AR. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis. 2014;62:73–85. https://doi.org/10.1016/j.nbd.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  63. Hokenson KE. BDNF signaling in epilepsy: TRKB-induced JAK/STAT pathway and phosphorylation of LSF in neurons (doctoral dissertation). Diss. https://hdl.handle.net/2144/16740. Accessed 2016.

  64. Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, Shao XQ, Meng FG, Zhang JG. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif. 2020;53: e12856. https://doi.org/10.1111/cpr.12856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 2019;15:459–72. https://doi.org/10.1038/s41582-019-0217-x.

    Article  CAS  PubMed  Google Scholar 

  66. Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020;18(10):918–35. https://doi.org/10.2174/1570159X18666200207120949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kothur K, Bandodkar S, Wienholt L, Chu S, Pope A, Gill D, Dale RC. Etiology is the key determinant of neuroinflammation in epilepsy: elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia. 2019. https://doi.org/10.1111/epi.16275.

    Article  PubMed  Google Scholar 

  68. Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc B. 1801;2020(375):20190415. https://doi.org/10.1098/rstb.2019.0415.

    Article  CAS  Google Scholar 

  69. Heuser K, Szokol K, Taubøll E. The role of glial cells in epilepsy. Tidsskr Nor Legeforen. 2014. https://doi.org/10.4045/tidsskr.12.1344.

    Article  Google Scholar 

  70. Rehni AK, Singh TG. Modulation of leukotriene D4 attenuates the development of seizures in mice. Prostaglandins Leukot Essent Fatty Acids. 2011;85(2):97–106. https://doi.org/10.1016/j.plefa.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  71. Rehni AK, Singh TG, Singh N, Arora S. Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol. 2010;381(1):11–9. https://doi.org/10.1007/s00210-009-0476-y.

    Article  CAS  PubMed  Google Scholar 

  72. Humphries F, Yang S, Wang B, Moynagh PN. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 2015;22:225–36. https://doi.org/10.1038/cdd.2014.126.

    Article  CAS  PubMed  Google Scholar 

  73. Lin DQ, Cai XY, Wang CH, Yang B, Liang RS. Optimal concentration of necrostatin-1 for protecting against hippocampal neuronal damage in mice with status epilepticus. Neural Regen Res. 2020;15:936. https://doi.org/10.4103/1673-5374.268903.

    Article  PubMed  Google Scholar 

  74. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010. https://doi.org/10.1152/ajpendo.00745.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rousset CI, Leiper FC, Kichev A, Gressens P, Carling D, Hagberg H, Thornton C. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic–ischaemic brain injury in mice. J Neurochem. 2015;133:242–52. https://doi.org/10.1111/jnc.13034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: potential therapeutic target for ischemic stroke. Theranostics. 2018;8:4535. https://doi.org/10.7150/thno.25674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S. AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem. 2009;109:17–23. https://doi.org/10.1111/j.1471-4159.2009.05916.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Waldbaum S, Patel M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy? J Bioenerg Biomembr. 2010;42:449–55. https://doi.org/10.1007/s10863-010-9320-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu W, Yan J, Ocak U, Lenahan C, Shao A, Tang J, Zhang J, Zhang JH. Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics. 2021;11:522. https://doi.org/10.7150/thno.49426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernardo A, Minghetti L. PPAR-γ agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des. 2006;12:93–109. https://doi.org/10.2174/138161206780574579.

    Article  CAS  PubMed  Google Scholar 

  81. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLoS Comput Biol. 2017;13: e1005510. https://doi.org/10.1371/journal.pone.0144806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol. 2018;38:121–32. https://doi.org/10.1007/s10571-017-0554-5.

    Article  CAS  PubMed  Google Scholar 

  83. Meng QQ, Feng ZC, Zhang XL, Hu LQ, Wang M, Zhang HF, Li SM. PPAR-γ activation exerts an anti-inflammatory effect by suppressing the nlrp3 inflammasome in spinal cord-derived neurons. Mediat Inflamm. 2019. https://doi.org/10.1155/2019/6386729.

    Article  Google Scholar 

  84. Chuang YC, Lin TK, Huang HY, Chang WN, Liou CW, Chen SD, Chang AY, Chan SH. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus. J Neuroinflamm. 2012. https://doi.org/10.1186/1742-2094-9-184.

    Article  Google Scholar 

  85. Abdallah DM. Anticonvulsant potential of the peroxisome proliferator-activated receptor gamma agonist pioglitazone in pentylenetetrazole-induced acute seizures and kindling in mice. Brain Res. 2010;1351:246–53. https://doi.org/10.1016/j.brainres.2010.06.034.

    Article  CAS  PubMed  Google Scholar 

  86. Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A. Involvement of PPARγ in the anticonvulsant activity of EP-80317, a ghrelin receptor antagonist. Front Pharmacol. 2017;8:676. https://doi.org/10.3389/fphar.2017.00676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hung TY, Chu FL, Wu DC, Wu SN, Huang CW. The protective role of peroxisome proliferator-activated receptor-gamma in seizure and neuronal excitotoxicity. Mol Neurobiol. 2019;56:5497–506. https://doi.org/10.1007/s12035-018-1457-2.

    Article  CAS  PubMed  Google Scholar 

  88. Saha L, Bhandari S, Bhatia A, Banerjee D, Chakrabarti A. Anti-kindling effect of bezafibrate, a peroxisome proliferator-activated receptors alpha agonist, in pentylenetetrazole induced kindling seizure model. J Epilepsy Res. 2014;4:45. https://doi.org/10.14581/jer.14011.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huang C, Chi XS, Li R, Hu X, Xu HX, Li JM, Zhou D. Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J Mol Neurosci. 2017;63:173–84. https://doi.org/10.1007/s12031-017-0968-z.

    Article  CAS  PubMed  Google Scholar 

  90. Liang X, Samways DS, Wolf K, Bowles EA, Richards JP, Bruno J, Dutertre S, DiPaolo RJ, Egan TM. Quantifying Ca2+ current and permeability in ATP-gated P2X7 receptors. J Biol Chem. 2015;290:7930–42. https://doi.org/10.1074/jbc.M114.627810.

    Article  CAS  PubMed  Google Scholar 

  91. Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12:77–85. https://doi.org/10.1016/j.mito.2011.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kent AC, El Baradie KB, Hamrick MW. Targeting the mitochondrial permeability transition pore to prevent age-associated cell damage and neurodegeneration. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6626484.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhang Z, Sun T, Niu JG, He ZQ, Liu Y, Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res. 2015;10:1125. https://doi.org/10.4103/1673-5374.160109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Panigrahy SR, Pradhan S, Maharana CS. Amelioration of oxidative stress and neuroinflammation by Saroglitazar, a dual PPARα/γ agonist in MES induced epileptic rats. Biomed Pharmacol J. 2019;12:1985–91. https://doi.org/10.13005/bpj/1830.

    Article  CAS  Google Scholar 

  95. Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S. Antiepileptogenic effects of borneol in pentylenetetrazole-induced kindling in mice. Naunyn-Schmiedeberg’s Arch Pharmacol. 2016;389:467–75. https://doi.org/10.1007/s00210-016-1220-z.

    Article  CAS  Google Scholar 

  96. Shu Y, Zhu C, Zeng M, Zhan Q, Hu Z, Wu X. The protective effect of carbenoxolone on gap junction damage in the hippocampal CA1 area of a temporal lobe epilepsy rat model. Ann Transl Med. 2019. https://doi.org/10.21037/atm.2019.11.04.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hino H, Takahashi H, Suzuki Y, Tanaka J, Ishii E, Fukuda M. Anticonvulsive effect of paeoniflorin on experimental febrile seizures in immature rats: possible application for febrile seizures in children. PLoS ONE. 2012;7: e42920. https://doi.org/10.1371/journal.pone.0042920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen YF, Lee MM, Fang HL, Yang JG, Chen YC, Tsai HY. Paeoniflorin inhibits excitatory amino acid agonist-and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-d-aspartate receptors. BMC Complement Altern Med. 2016;16:1–4. https://doi.org/10.1186/s12906-016-1230-x.

    Article  CAS  Google Scholar 

  99. Hu PF, Chen WP, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med. 2018;17:6194–200. https://doi.org/10.3892/mmr.2018.8631.

    Article  CAS  Google Scholar 

  100. Cong C, Kluwe L, Li S, Liu X, Liu Y, Liu H, Gui W, Liu T, Xu L. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. J Ethnopharmacol. 2019;237:1–8. https://doi.org/10.1016/j.jep.2019.03.030.

    Article  CAS  PubMed  Google Scholar 

  101. Singh N, Saha L, Kumari P, Singh J, Bhatia A, Banerjee D, Chakrabarti A. Effect of dimethyl fumarate on neuroinflammation and apoptosis in pentylenetetrazol kindling model in rats. Brain Res Bull. 2019;144:233–45. https://doi.org/10.1016/j.brainresbull.2018.11.013.

    Article  CAS  PubMed  Google Scholar 

  102. Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone SA, Bruegger JJ, Wang L, Kim V. Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS ONE. 2019;14: e0214250. https://doi.org/10.1371/journal.pone.0214250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elsayed AA, Menze ET, Tadros MG, Ibrahim BM, Sabri NA, Khalifa AE. Effects of genistein on pentylenetetrazole-induced behavioral and neurochemical deficits in ovariectomized rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2018;391:27–36. https://doi.org/10.1007/s00210-017-1435-7.

    Article  CAS  Google Scholar 

  104. Jiang G, Wu H, Hu Y, Li J, Li Q. Gastrodin inhibits glutamate-induced apoptosis of PC12 cells via inhibition of CaMKII/ASK-1/p38 MAPK/p53 signaling cascade. Cell Mol Neurobiol. 2014;34:591–602. https://doi.org/10.1007/s10571-014-0043-z.

    Article  CAS  PubMed  Google Scholar 

  105. Chen L, Liu X, Wang H, Qu M. Gastrodin attenuates pentylenetetrazole-induced seizures by modulating the mitogen-activated protein kinase-associated inflammatory responses in mice. Neurosci Bull. 2017;33:264–72. https://doi.org/10.1007/s12264-016-0084-z.

    Article  CAS  PubMed  Google Scholar 

  106. Yamamoto HA, Mohanan PV. Ganglioside GT1B and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res. 2003;964:100–6. https://doi.org/10.1016/S0006-8993(02)04083-0.

    Article  CAS  PubMed  Google Scholar 

  107. Yang N, Guan QW, Chen FH, Xia QX, Yin XX, Zhou HH, Mao XY. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/6687185.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hellmich HL, Rojo DR, Micci MA, Sell SL, Boone DR, Crookshanks JM, DeWitt DS, Masel BE, Prough DS. Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury. PLoS ONE. 2013;8: e53230. https://doi.org/10.1371/journal.pone.0053230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. García-García L, Shiha AA, de la Rosa RF, Delgado M, Silván Á, Bascuñana P, Bankstahl JP, Gomez F, Pozo MA. Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacology. 2017;123:261–73. https://doi.org/10.1016/j.neuropharm.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  110. Reddy SD, Younus I, Sridhar V, Reddy DS. Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy. Int J Mol Sci. 2019;20:220. https://doi.org/10.3390/ijms20010220.

    Article  CAS  PubMed Central  Google Scholar 

  111. Castro OW, Upadhya D, Kodali M, Shetty AK. Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction—are we there yet? Front Neurol. 2017;8:603. https://doi.org/10.3389/fneur.2017.00603.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gao X, Zhao XL, Zhu YH, Li XM, Xu Q, Lin HD, Wang MW. Tetramethylpyrazine protects palmitate-induced oxidative damage and mitochondrial dysfunction in C2C12 myotubes. Life Sci. 2011;88:803–9. https://doi.org/10.1016/j.lfs.2011.02.025.

    Article  CAS  PubMed  Google Scholar 

  113. Jin Y, Cai S, Jiang Y, Zhong K, Wen C, Ruan Y, Chew LA, Khanna R, Xu Z, Yu J. Tetramethylpyrazine reduces epileptogenesis progression in electrical kindling models by modulating hippocampal excitatory neurotransmission. ACS Chem Neurosci. 2019;10:4854–63. https://doi.org/10.1021/acschemneuro.9b00575.

    Article  CAS  PubMed  Google Scholar 

  114. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother. 2021;140: 111729. https://doi.org/10.1016/j.biopha.2021.111729.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: conceived and designed the experiments: TGS. Analyzed the data: SS and TGS. Wrote the manuscript: SS. Editing of the manuscript: TGS; critically reviewed the article: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, T.G. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm. Res. 70, 1027–1042 (2021). https://doi.org/10.1007/s00011-021-01511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01511-9

Keywords

Navigation