Skip to main content

Advertisement

Log in

Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondrial dysfunction and oxidative stress contribute to several neurologic disorders and have recently been implicated in acquired epilepsies such as temporal lobe epilepsy (TLE). Acquired epilepsy is typically initiated by a brain injury followed by a “latent period” whereby molecular, biochemical and other cellular alterations occur in the brain leading to chronic epilepsy. Mitochondrial dysfunction and oxidative stress are emerging as factors that not only occur acutely as a result of precipitating injuries such as status epilepticus (SE), but may also contribute to epileptogenesis and chronic epilepsy. Mitochondria are the primary site of reactive oxygen species (ROS) making them uniquely vulnerable to oxidative damage that may affect neuronal excitability and seizure susceptibility. This mini-review provides an overview of evidence suggesting the role of mitochondrial dysfunction and oxidative stress as acute consequences of injuries that are known to incite chronic epilepsy and their involvement in the chronic stages of acquired epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barros DO, Xavier SM, Barbosa CO, Silva RF, Freitas RL, Maia FD, Oliveira AA, Freitas RM, Takahashi RN (2007) Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett 416:227–230

    Article  CAS  Google Scholar 

  • Bellissimo MI, Amado D, Abdalla DS, Ferreira EC, Cavalheiro EA, Naffah-Mazzacoratti MG (2001) Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res 46:121–128

    Article  CAS  Google Scholar 

  • Bhargava A, Khan S, Panwar H, Pathak N, Punde RP, Varshney S, Mishra PK (2010) Occult hepatitis B virus infection with low viremia induces DNA damage, apoptosis and oxidative stress in peripheral blood lymphocytes. Virus Res 153:143–150

    Article  CAS  Google Scholar 

  • Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235

    Article  CAS  Google Scholar 

  • Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18:993–1002

    Article  CAS  Google Scholar 

  • Chang CK, Chang CP, Liu SY, Lin MT (2007) Oxidative stress and ischemic injuries in heat stroke. Prog Brain Res 162:525–546

    Article  CAS  Google Scholar 

  • Chuang YC, Chang AY, Lin JW, Hsu SP, Chan SH (2004) Mitochondrial dysfunction and ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus in the rat. Epilepsia 45:1202–1209

    Article  CAS  Google Scholar 

  • Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57

    Article  CAS  Google Scholar 

  • Dal-Pizzol F, Klamt F, Vianna MM, Schroder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182

    Article  CAS  Google Scholar 

  • Deshpande LS, Sun DA, Sombati S, Baranova A, Wilson MS, Attkisson E, Hamm RJ, DeLorenzo RJ (2008) Alterations in neuronal calcium levels are associated with cognitive deficits after traumatic brain injury. Neurosci Lett 441:115–119

    Article  CAS  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  CAS  Google Scholar 

  • Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27:10674–10684

    Article  CAS  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  Google Scholar 

  • Erakovic V, Zupan G, Varljen J, Laginja J, Simonic A (2000) Lithium plus pilocarpine induced status epilepticus–biochemical changes. Neurosci Res 36:157–166

    Article  CAS  Google Scholar 

  • Frantseva MV, Perez Velazquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435

    Article  CAS  Google Scholar 

  • Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312

    Article  CAS  Google Scholar 

  • Gao J, Chi ZF, Liu XW, Shan PY, Wang R (2007) Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci Lett 411:152–157

    Article  CAS  Google Scholar 

  • Gil L, Martinez G, Gonzalez I, Tarinas A, Alvarez A, Giuliani A, Molina R, Tapanes R, Perez J, Leon OS (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47:217–224

    Article  CAS  Google Scholar 

  • Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39:63–71

    Article  CAS  Google Scholar 

  • Hammer J, Alvestad S, Osen KK, Skare O, Sonnewald U, Ottersen OP (2008) Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy. Glia 56:856–868

    Article  Google Scholar 

  • Helms G, Ciumas C, Kyaga S, Savic I (2006) Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry 77:489–494

    Article  CAS  Google Scholar 

  • Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667

    Article  CAS  Google Scholar 

  • Jain A, Martensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917

    Article  CAS  Google Scholar 

  • Jarrett SG, Liang LP, Hellier JL, Staley KJ, Patel M (2008a) Mitochondrial DNA damage and impaired base excision repair during epileptogenesis. Neurobiol Dis 30:130–138

    Article  CAS  Google Scholar 

  • Jarrett SG, Milder JB, Liang LP, Patel M (2008b) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106:1044–1051

    Article  CAS  Google Scholar 

  • Kann O, Kovacs R, Njunting M, Behrens CJ, Otahal J, Lehmann TN, Gabriel S, Heinemann U (2005) Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128:2396–2407

    Article  Google Scholar 

  • Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE, Kunz WS (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15:1105–1114

    Article  Google Scholar 

  • Kunz WS, Kudin AP, Vielhaber S, Blumcke I, Zuschratter W, Schramm J, Beck H, Elger CE (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48:766–773

    Article  CAS  Google Scholar 

  • Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(−/+) mice. Free Radic Biol Med 36:542–554

    Article  CAS  Google Scholar 

  • Liang LP, Patel M (2006) Seizure-induced changes in mitochondrial redox status. Free Radic Biol Med 40:316–322

    Article  CAS  Google Scholar 

  • Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570

    Article  CAS  Google Scholar 

  • Liang LP, Jarrett SG, Patel M (2008) Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J Neurosci 28:11550–11556

    Article  CAS  Google Scholar 

  • Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    CAS  Google Scholar 

  • Melov S, Doctrow SR, Schneider JA, Haberson J, Patel M, Coskun PE, Huffman K, Wallace DC, Malfroy B (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353

    CAS  Google Scholar 

  • Milder JB, Liang LP, Patel M (2010) Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 40:238–244

    Article  CAS  Google Scholar 

  • Mohajeri MH, Madani R, Saini K, Lipp HP, Nitsch RM, Wolfer DP (2004) The impact of genetic background on neurodegeneration and behavior in seizured mice. Genes Brain Behav 3:228–239

    Article  CAS  Google Scholar 

  • Mohanan PV, Yamamoto HA (2002) Preventive effect of melatonin against brain mitochondria DNA damage, lipid peroxidation and seizures induced by kainic acid. Toxicol Lett 129:99–105

    Article  CAS  Google Scholar 

  • Mueller SG, Trabesinger AH, Boesiger P, Wieser HG (2001) Brain glutathione levels in patients with epilepsy measured by in vivo (1)H-MRS. Neurology 57:1422–1427

    CAS  Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280

    CAS  Google Scholar 

  • Ozawa M, Hirabayashi M, Kanai Y (2002) Developmental competence and oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction 124:683–689

    Article  CAS  Google Scholar 

  • Patel M, Day BJ (1999) Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci 20:359–364

    Article  CAS  Google Scholar 

  • Patel M, Li QY (2003) Age dependence of seizure-induced oxidative stress. Neuroscience 118:431–437

    Article  CAS  Google Scholar 

  • Patel M, Liang LP, Roberts LJ 2nd (2001) Enhanced hippocampal F2-isoprostane formation following kainate-induced seizures. J Neurochem 79:1065–1069

    Article  CAS  Google Scholar 

  • Patel M, Li QY, Chang LY, Crapo J, Liang LP (2005) Activation of NADPH oxidase and extracellular superoxide production in seizure-induced hippocampal damage. J Neurochem 92:123–131

    Article  CAS  Google Scholar 

  • Patel M, Liang LP, Hou H, Williams BB, Kmiec M, Swartz HM, Fessel JP, Roberts LJ 2nd (2008) Seizure-induced formation of isofurans: novel products of lipid peroxidation whose formation is positively modulated by oxygen tension. J Neurochem 104:264–270

    CAS  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  CAS  Google Scholar 

  • Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391

    Article  CAS  Google Scholar 

  • Reed DJ, Savage MK (1995) Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochim Biophys Acta 1271:43–50

    Google Scholar 

  • Savic I, Thomas AM, Ke Y, Curran J, Fried I, Engel J Jr (2000) In vivo measurements of glutamine + glutamate (Glx) and N-acetyl aspartate (NAA) levels in human partial epilepsy. Acta Neurol Scand 102:179–188

    Article  CAS  Google Scholar 

  • Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 94:4103–4108

    Article  CAS  Google Scholar 

  • Schwarzbold ML, Rial D, De Bem TD, Machado DG, Cunha MP, Dos Santos AA, Dos Santos DB, Figueiredo CP, Farina M, Goldfeder EM, Rodrigues AL, Prediger RD, Walz R (2010) Effects of traumatic brain injury of different severity on emotional, cognitive and oxidative stress-related parameters in mice. J Neurotrauma 10:1883–93

    Google Scholar 

  • Sleven H, Gibbs JE, Heales S, Thom M, Cock HR (2006) Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 48:75–82

    Article  CAS  Google Scholar 

  • Sudha K, Rao AV, Rao A (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303:19–24

    Article  CAS  Google Scholar 

  • Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM (2004) The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 55:576–580

    Article  CAS  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54:382–389

    Article  CAS  Google Scholar 

  • Tang L, Reiter RJ, Li ZR, Ortiz GG, Yu BP, Garcia JJ (1998) Melatonin reduces the increase in 8-hydroxy-deoxyguanosine levels in the brain and liver of kainic acid-treated rats. Mol Cell Biochem 178:299–303

    Article  CAS  Google Scholar 

  • Tejada S, Sureda A, Roca C, Gamundi A, Esteban S (2007) Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Res Bull 71:372–375

    Article  CAS  Google Scholar 

  • Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–1091

    Article  CAS  Google Scholar 

  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    Google Scholar 

  • Vielhaber S, Niessen HG, Debska-Vielhaber G, Kudin AP, Wellmer J, Kaufmann J, Schonfeld MA, Fendrich R, Willker W, Leibfritz D, Schramm J, Elger CE, Heinze HJ, Kunz WS (2008) Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy. Epilepsia 49:40–50

    Article  CAS  Google Scholar 

  • Waldbaum S, Liang LP, Patel M (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115:1172–1182

    Article  CAS  Google Scholar 

  • Weiergraber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T (2007) Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J Neurophysiol 97:3660–3669

    Article  CAS  Google Scholar 

  • Werner P, Cohen G (1993) Glutathione disulfide (GSSG) as a marker of oxidative injury to brain mitochondria. Ann NY Acad Sci 679:364–369

    Article  CAS  Google Scholar 

  • Xavier SM, Barbosa CO, Barros DO, Silva RF, Oliveira AA, Freitas RM (2007) Vitamin C antioxidant effects in hippocampus of adult Wistar rats after seizures and status epilepticus induced by pilocarpine. Neurosci Lett 420:76–79

    Article  CAS  Google Scholar 

  • Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, Luo C, Kheirandish L, Gozal D, Liu R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126:313–323

    Article  CAS  Google Scholar 

  • Yamamoto HA, Mohanan PV (2003) Ganglioside GT1B and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res 964:100–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldbaum, S., Patel, M. Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?. J Bioenerg Biomembr 42, 449–455 (2010). https://doi.org/10.1007/s10863-010-9320-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9320-9

Keywords

Navigation